Version Control

<table>
<thead>
<tr>
<th>Version</th>
<th>Changes</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>First version released. 31/1/2019</td>
</tr>
<tr>
<td>1.1</td>
<td>28/2/2019: Updated instructions for thesis extension</td>
</tr>
<tr>
<td>2.0</td>
<td>17/5/2019: Updated for T2 2019</td>
</tr>
<tr>
<td>2.1</td>
<td>28/6/2019: Corrected dates for Seminar assessment for Thesis B.</td>
</tr>
<tr>
<td>2.2</td>
<td>1/7/2019: Removed mentions of T1 2019 from assessment schedule.</td>
</tr>
<tr>
<td>3.0</td>
<td>23 August 2019: Updated for T3 2019</td>
</tr>
</tbody>
</table>
Contents

1 COURSE DETAILS... 4
2 COURSE AIMS .. 4
3 COURSE LEARNING OUTCOMES* ... 4
4 BE (Hons) Program Learning Outcomes .. 5
5 INFORMATION ABOUT THE COURSE ... 6
 5.1 Undergraduate Thesis Structure for 3+ ... 6
 5.2 Presumed knowledge and skills ... 6
 5.3 How this course relates to other courses ... 6
 5.4 Which course code should you enroll in? ... 6
6 FACULTY-WIDE UNDERGRADUATE THESIS RULES ... 8
7 TEACHING STRATEGIES .. 8
8 ASSESSMENT PROCEDURE – (Undergraduate) ... 9
 8.1 Undergraduate Thesis for T3 2019 .. 9
 8.2 Thesis A (BIOM4951) ... 10
 8.2.1 TA1: Interim report (10%) ... 10
 8.2.2 TA2: Progress Checklist by Supervisor (SA/UN) ... 11
 8.3 Thesis B (BIOM4952) ... 11
 8.3.1 Experimental Thesis .. 11
 8.3.2 Design Thesis ... 11
 8.3.3 TB1: Research Seminar (10%) ... 11
 8.4 Thesis C (BIOM4953) ... 11
 8.4.1 TC1: Written report (65%) .. 11
 8.4.2 TC2: Poster presentation (10%) ... 12
 8.4.3 TC3: Participation (5%) ... 12
9 ASSESSMENT PROCEDURE: MASTERS’ PROJECT ... 13
 9.1 BIOM9020 Assessment Details .. 13
 9.1.1 MP1: Interim report ... 13
 9.2 BIOM9021 / BIOM9914 Assessment Details ... 13
 9.2.1 MP2: Written report .. 13
10 ASSESSMENT DUE DATES FOR GSBME T3 2019 .. 14
11 GUIDELINES FOR WRITING YOUR THESIS ... 14
12 APPLICATION FOR EXTENSION FOR THESIS A, B or C ... 16
13 APPLICATION FOR EXTENSION FOR MASTERS’ PROJECT .. 16
<table>
<thead>
<tr>
<th>Page</th>
<th>Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>14</td>
<td>PROCEDURE IF YOU FAIL THESIS A,B or C</td>
</tr>
<tr>
<td>15</td>
<td>LATE PROCEDURE</td>
</tr>
<tr>
<td>16</td>
<td>INDUSTRY BASED PROJECTS</td>
</tr>
<tr>
<td>17</td>
<td>RELEVANT RESOURCES</td>
</tr>
<tr>
<td>18</td>
<td>COURSE EVALUATION AND DEVELOPMENT</td>
</tr>
<tr>
<td>19</td>
<td>DATES TO NOTE</td>
</tr>
<tr>
<td>20</td>
<td>PLAGIARISM</td>
</tr>
<tr>
<td>21</td>
<td>ACADEMIC ADVICE</td>
</tr>
</tbody>
</table>

1 COURSE DETAILS

<table>
<thead>
<tr>
<th>Units of Credit</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thesis A, B and C are over 3 consecutive terms (4 UoC per term, called 4+4+4 model).</td>
<td></td>
</tr>
<tr>
<td>Students have the choice of completing Thesis B and C together in one term (4 UoC in first term, 8 UoC in next term, called 4+8 model).</td>
<td></td>
</tr>
<tr>
<td>Masters of Biomedical Engineering by Coursework (Masters Project, 6 UoC per term) is over 2 consecutive terms (BIOM9020/BIOM9021).</td>
<td></td>
</tr>
<tr>
<td>Masters of Biomedical Engineering by Coursework (full time) is over 1 term (BIOM9914 Masters Project).</td>
<td></td>
</tr>
</tbody>
</table>

Course Coordinator

Michael Stevens

Email: michael.stevens@unsw.edu.au

Office: Lower Ground Samuels Building

Consultation Times: By appointment

2 COURSE AIMS

The thesis provides an opportunity for the student to bring together engineering principles learned over their previous years of study and apply these principles to innovatively solve problems such as the development of a specific design, process and/or the investigation of a hypothesis. Thesis projects must be complex, open-ended problems that allow room for student creativity, and the acquisition, analysis and interpretation of results. There must be multiple possible solutions or conclusions at the outset and enough complexity to require a degree of project planning from the student. The thesis requires the student to formulate problems in engineering terms, manage an engineering project and find solutions by applying engineering methods. Students also develop their ability to work in a research and development environment.

The Biomedical Engineering Research Thesis or Masters’ Project aims to analyse or solve biomedical problems by applying engineering techniques. Problems to be addressed relate to basic or applied biomedical research or development of medical devices, processes or software. The Research Thesis is obligatory for all students of the dual (formerly concurrent) Bachelor of Engineering/Master of Biomedical Engineering program, and is undertaken in years 4 and 5 of the degree.

The Biomedical Engineering Masters Project is open to dual (formerly concurrent) degree students who have successfully completed Thesis, B and C, or postgraduate students enrolled in the Masters of Biomedical Engineering by Coursework (Program code 8660).

3 COURSE LEARNING OUTCOMES*

At the conclusion of this course, students should be able to:
1. Develop a design or a process or investigate a hypothesis following industry and professional engineering standards. (7, 8, 9, 10)
2. Critically reflect on a specialist body of knowledge related to their thesis topic. (3)
3. Apply scientific and engineering methods to solve an engineering problem. (7)
4. Analyse data objectively using quantitative and mathematical methods. (2, 7, 8)
5. Demonstrate oral and written communication in professional and lay domains. (12)
6. To solve biomedical problems by applying 1-5.

*Mapping to Program Learning Outcomes in brackets.

4 BE (Hons) Program Learning Outcomes

1. Comprehensive, theory based understanding of the underpinning natural and physical sciences and the engineering fundamentals applicable to the engineering discipline.
2. Conceptual understanding of the mathematics, numerical analysis, statistics, and computer and information sciences which underpin the engineering discipline.
3. In-depth understanding of specialist bodies of knowledge within the engineering discipline.
4. Discernment of knowledge development and research directions within the engineering discipline.
5. Knowledge of engineering design practice and contextual factors impacting the engineering discipline.
6. Understanding of the scope, principles, norms, accountabilities and bounds of sustainable engineering practice in the specific discipline.
7. Application of established engineering methods to complex engineering problem solving.
8. Fluent application of engineering techniques, tools and resources.
10. Application of systematic approaches to the conduct and management of engineering projects.
11. Ethical conduct and professional accountability.
12. Effective oral and written communication in professional and lay domains.
13. Creative, innovative and pro-active demeanour.
14. Professional use and management of information.
15. Orderly management of self, and professional conduct.
16. Effective team membership and team leadership.
5 INFORMATION ABOUT THE COURSE

5.1 Undergraduate Thesis Structure for 3+

From Term 1, 2019 the Engineering thesis will be taken for the duration of three terms, as Thesis A, Thesis B and Thesis C. Each course will carry 4 Units of Credit (UoC) for a total of 12 UoC. Students will have two options to take Thesis from 2019:

- Option 2: (4+8: 4 UoC in one term and 8 UoC in the following term): Students who demonstrate satisfactory progress in Thesis A may apply to their School to take a 4+8 UoC structure where both Thesis B and C are taken in the next single term of that year. Total of 12 UoC. This option is subject to having demonstrated satisfactory progress in Thesis A.

Students who do not maintain satisfactory performance in Option 2 will revert to Option 1 and take Thesis across three terms. Thesis A, Thesis B and Thesis C will run in every term (T1, T2 and T3).

5.2 Presumed knowledge and skills

Students in the dual degree program enrol in a thesis after completion of 168 units of credit, usually in their 4th year. Masters’ Project students (BIOM9914, BIOM9020/1) should have a background in the relevant engineering discipline for their project. Undergraduate students who apply for a Masters’ Project should have a WAM of at least 65%. Their application for admission into BIOM9914, BIOM9020/1 should be approved by their thesis supervisor and supported by a project description.

5.3 How this course relates to other courses

For students enrolled in BIOM4591 Research Thesis A, BIOM4952 Research Thesis B or Masters’ Project (BIOM9020, BIOM9021 or BIOM9914) in T3 2019, all students enrolled in this course will complete the same assessment and be examined by the Graduate School of Biomedical Engineering (GSBmE), regardless of their undergraduate school.

5.4 Which course code should you enroll in?

Table 1 shows the course codes for enrolment in T3 2019. Please check these carefully and make sure you are enrolled correctly.

Note that enrolment in Masters’ Project is a manual process. Please refer to Moodle for instructions on how to do this.

Table 1: Course codes for enrolment.

<table>
<thead>
<tr>
<th>Course Name</th>
<th>Course Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Research Thesis A</td>
<td>BIOM4951</td>
</tr>
</tbody>
</table>
(Note: If you are a Materials Science/Biomedical Engineering student, for **2019 ONLY** you have the choice of enrolling in the BIOM thesis or the Materials Science Thesis).

<table>
<thead>
<tr>
<th></th>
<th>BIOM Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Research Thesis B</td>
<td>BIOM4952</td>
</tr>
<tr>
<td>Masters’ Project Part 1</td>
<td>BIOM9020</td>
</tr>
<tr>
<td>Masters’ Project Part 2</td>
<td>BIOM9021</td>
</tr>
<tr>
<td>Masters’ Project (1 Term)</td>
<td>BIOM9914</td>
</tr>
</tbody>
</table>

5.5 Project Selection for BIOM4951 Research Thesis A

1. Go the following [moodle](https://example.com) site and self-enrol as a student (key: Student50).
2. View the projects under "Thesis Database"
3. Watch the video about thesis for trimesters.
4. Contact supervisors about their projects, and identify 3 different supervisors you would like to work with. Projects are allocated based on a preference system.
5. Follow the link on moodle for project selection and complete the form, listing the three supervisors (and their project) that you want to work with, in your preferred order.
6. During exam block, projects will be allocated based on preferences and supervisor load.

5.6 Enrolment in Masters’ Project (BIOM9020/9021 or BIOM9914)

1. If you are doing a Masters’ Project (BIOM9020/9021 or BIOM9914), you must meet the following criteria:
 a. WAM > 65
 b. Supervisor Approval
2. You cannot enroll normally, enrolment happens at a school level.
 a. Please complete the [Masters’ Project enrolment online form](https://example.com) to express your interest to enrol. Please meet and discuss the project with your potential supervisor BEFORE completing the form.
6 FACULTY-WIDE UNDERGRADUATE THESIS RULES

- With School permission, students may take Thesis B and C together. This option should be limited only to students who can demonstrate the ability to progress. This will require a prerequisite waiver to waive the Thesis B requirement for Thesis C.
- Students must take Thesis courses in consecutive terms, unless exceptional circumstances are demonstrated by the student through the standard channels and accepted by the School.
- Students may not undertake Industrial Training while enrolled in Thesis A, B or C, unless exceptional circumstances are demonstrated by the student and accepted by the School.
- Students may enroll in up to and including 20 UoC while undertaking Thesis B & C together (i.e. 12 UoC of non-thesis courses and 8 UoC of Thesis B & C). While this is overloading and so requires manual enrolment, permission for that will be given automatically. Students who wish to enroll in 22 UoC or more while undertaking Thesis (i.e. 18 UoC of credit and 4 UoC of Thesis) will need to apply for and be approved to overload.
- Thesis A, B and C should be offered in every term. Exceptions may be granted with appropriate justification.
- Thesis A and B will initially carry a ‘satisfactory’ (EC grade) or ‘not satisfactory’ (EF grade). A student’s final Thesis mark for A, B and C will reflect the overall weighted percentage of marks achieved during all three courses once Thesis C is completed, and the earlier EC grades will be replaced with the final mark at that time.

7 TEACHING STRATEGIES

| Suggested approach to learning | The student will rely on developing an independent and collaborative learning approach. Research questions are often open-ended and highly specialised, so the student will learn most by one-to-one mentoring provided by the supervisor and their research team. You will learn most of your skills from PhDs and Post Docs in your lab. We encourage you to attend lab meetings to get and know lab personnel. |

8 ASSESSMENT PROCEDURE – (Undergraduate)

8.1 Undergraduate Thesis for T3 2019

Students in this cohort will complete their thesis over three terms (4+4+4) or over two terms (4+8). A summary of the assessment is as follows.

Thesis A: It is intended that Thesis A cover the scoping, planning, and completing preparations for the project.

Thesis B: The primary intention behind Thesis B is to ensure students stay on track with their projects and project work as they progress through the year.

Thesis C: Thesis C continues the project work. The key deliverable is the Written Report, alongside a poster presentation.

Table 2 shows the assessment schedule over the three terms. These course assessments relate to the student’s research planning, conducting the research project and writing the thesis document, and disseminating the results in different forms.

Table 2: Assessment Schedule for 2019 Term 3

<table>
<thead>
<tr>
<th>Course Name</th>
<th>Course Code</th>
<th>Task</th>
<th>Due Date</th>
<th>Weighting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biomedical Engineering Research Thesis A</td>
<td>BIOM4951</td>
<td>TA1: Interim report</td>
<td>Mon Week 11 T3 (25 Nov 2019)</td>
<td>10%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TA2: Progress Report Checklist</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Biomedical Engineering Research Thesis B</td>
<td>BIOM4952</td>
<td>TB1: Progress Research Seminar</td>
<td>T3 Week 10 (4+4+4)</td>
<td>10%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>T3 Week 3 (4+8)</td>
<td></td>
</tr>
<tr>
<td>Biomedical Engineering Research Thesis C</td>
<td>BIOM4953</td>
<td>TC1: Final Report</td>
<td>T3 Week 10 (4+4+4)</td>
<td>65%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TC2: Poster Presentation</td>
<td>T3 Week 10 (4+4+4)</td>
<td>10%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TC3: Participation</td>
<td>T3 Week 10 (4+4+4)</td>
<td>5%</td>
</tr>
</tbody>
</table>
8.2 Thesis A (BIOM4951)

Your objectives in Thesis A are

1. To build your knowledge base on your specific research topic.
2. Use that knowledge base to inform your specific project aims and methodology.
3. Complete preliminary work towards meeting the specific project aims.

To assess this, there are two assessment tasks for Thesis A.

8.2.1 TA1: Interim report (10%)

1. Literature review or equivalent (50%)
 a. What is the problem to be solved, and its significance?
 b. Must include
 i. Brief background to project
 ii. Summary of literature relevant to project
 iii. Identification of “gaps” in the literature
 iv. Problem Statement (informed by gaps in the literature)
 v. Hypothesis and aims
 c. Indicative length is 10-15 pages,

2. Project planning (20%)
 a. How will the student answer the research question in the given time using their available resources?
 b. Must include
 i. Proposed Solution/Experimental Methodology
 ii. Detailed Thesis timeline – for next two terms
 1. Justification of time allocation for each task
 iii. Available resources identified
 iv. Required training and upskilling identified

3. Project Dependent Preparations (20%)
 a. Can the student achieve the aims in the timeline? What progress has been made already?
 b. Project specific, but may include
 i. Evidence of training on specific equipment
 ii. Evidence of some upskilling in new software/methods
 iii. Preliminary results
 iv. Preliminary sketches
 v. Components/parts ordered
 vi. Detailed budget of parts to be ordered
 vii. Risk Assessment

4. Document presentation (10%)
 a. Report layout
 b. English skills – spelling, grammar
 c. Data presentation (if applicable)
 d. Clarity of writing
 e. Citations consistent and correctly formatted

Note: For students intending to undertake Thesis B and C simultaneously in the second term (4+8 model), the Project Plan (Thesis A deliverable) should be of sufficient quality and depth to demonstrate capacity for the student to complete B & C concurrently.
8.2.2 TA2: Progress Checklist by Supervisor (SA/UN)
1. Feasibility of completion using 4+8 model

8.3 Thesis B (BIOM4952)
The primary intention behind Thesis B is to ensure students stay on track with their projects and project work as they progress through the year. What is completed in this time is project specific, but may include

8.3.1 Experimental Thesis
- Completing most/all experiments.
- Performing preliminary analysis.

8.3.2 Design Thesis
- Complete first and second rounds of designs and begin prototyping.
- Develop a final design for final manufacture.

There is one assessment task for Thesis B.

8.3.3 TB1: Research Seminar (10%)
- This seminar will be presented to the supervisor, their research team and an additional academic assessor. It will involve the student detailing the background, motivation for their work, progress completed so far and a critical reflection on their work.
- Students must organise a time with their supervisor and find another assessor.
- For students doing 4+4+4, there is an expectation that the student will have preliminary results by this point, and seminar will be in Week 10.
- For students doing 4+8, the results should be almost finalised by this point, and the seminar will be held in Week 3 of the second term. This gives students the opportunity to revert to 4+4+4 prior to Census Date if their progress is deemed unsatisfactory.
- Note: You should discuss with your supervisor early in the second term to identify a suitable time to complete the assessment task.
- Length: 15 minutes + 5 minutes questions

8.4 Thesis C (BIOM4953)
The aim of Thesis C is to finalise your research results and disseminate them in both an oral and written manner. This is the final key part of being a successful researcher. To that end, the assessment tasks provide students with a realistic experience of being a researcher.

There are 3 assessment tasks for Thesis C.

8.4.1 TC1: Written report (65%)
1. Literature review/background and putting the results in context (20%)
2. Execution of the research project, quality of analysis, discussion of results (50%)
3. Conclusions and value added (20%)
4. Document presentation (10%)
8.4.2 TC2: Poster presentation (10%)
1. Students are required to present their poster at a Thesis Conference at the end of term. This is a good opportunity to present your work to senior academics and to industry.
2. You will stand next to your poster and be asked questions by assessors on your topic. Success in this assessment will involve both a clear and cohesive poster and an ability to explain your research to engineers who are not necessarily in your field of study.

8.4.3 TC3: Participation (5%)
1. Completion of Project Exit Form
2. Initiative and Engagement
 a. Intellectual contribution
3. Sustained activity throughout the term
 a. Attendance at lab meetings
4. Diligence and competence in performing the task
 a. Amount of work and engagement with problem
 b. Risk assessments complete (when relevant)
 c. Other project-specific evidence (e.g. lab book completion)
9 ASSESSMENT PROCEDURE: MASTERS’ PROJECT

Masters’ project assessment tasks are listed in Table 3 and Table 4.

Table 3: Assessment Tasks for Masters’ Project (BIOM9020/9021)

<table>
<thead>
<tr>
<th>BIOM9020</th>
<th>BIOM9021</th>
</tr>
</thead>
<tbody>
<tr>
<td>Task</td>
<td>Due Date</td>
</tr>
</tbody>
</table>

Table 4: Assessment Tasks for 1-Term Masters’ Project (BIOM9914)

<table>
<thead>
<tr>
<th>BIOM9021</th>
</tr>
</thead>
<tbody>
<tr>
<td>Task</td>
</tr>
<tr>
<td>MP2: Final Report (100% of final grade)</td>
</tr>
</tbody>
</table>

9.1 BIOM9020 Assessment Details

9.1.1 MP1: Interim report
1. Reviewing the work of others (50%)
2. Articulating a research question and a plan (20%)
3. Project Dependent Preparations (20%)
4. Document presentation (10%)

9.2 BIOM9021 / BIOM9914 Assessment Details

9.2.1 MP2: Written report
1. Literature review/background and putting the results in context (20%)
2. Execution of the research project, quality of analysis, discussion of results (50%)
3. Conclusions and value added (20%)
4. Document presentation (10%)

Note that for students enrolled in BIOM9020/9021, your grade on your transcript at the conclusion of BIOM9020 will read EC.
10 ASSESSMENT DUE DATES FOR GSBME T3 2019

Table 5 summarises the assessment due dates for T3 2019

<table>
<thead>
<tr>
<th>Course</th>
<th>Assessment Item</th>
<th>Due Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thesis A (BIOM9451)</td>
<td>Interim Report</td>
<td>Monday Week 11 (4pm)</td>
</tr>
<tr>
<td>Thesis B (BIOM4952)</td>
<td>Seminar</td>
<td>Week 10 Term 3 2019 (Arranged by student and supervisor)</td>
</tr>
<tr>
<td>Masters Project Part 1 (BIOM 9020)</td>
<td>Report</td>
<td>Monday Week 11 (4pm)</td>
</tr>
<tr>
<td>Masters Project Part 2</td>
<td>Report</td>
<td>Monday Week 11 (4pm)</td>
</tr>
</tbody>
</table>

11 GUIDELINES FOR WRITING YOUR THESIS

The thesis content will be assessed according to the stated thesis aims which may be a) experimental or simulation based b) design or c) critical reviews. The assessment weightings are shown below. Please note that these are only assessment criteria. The thesis structure outline is entirely up to you as long as you clearly address the following:

1. Introduction, background and aims

 This will include i) the biomedical problems you are addressing and their relevance ii) past work addressing this problem and other relevant background information and iii) hypothesis and/or aims for this project.

2. Methodology

 a) Experimental or simulation based projects

 Detail the methods and techniques you used. Provide enough information so that others may replicate your methods. Explain how the methods were used to generate the data in this thesis. Provide statistical methods if they were used to analyse data. Briefly explain how the methods address the hypotheses or aims of this project.

 b) Design projects

 Detail the software, instrumentation and manufacturing methods that were used to create the design. Provide a specification for the devices or software, as well as the intended methods for testing how well the design meets the specification. Provide statistical methods if they were used to analyse design performance.

 c) Critical reviews

 Outline the methodology that was used to critically review the field of research e.g., databases, interviews, patent searches
3. Research Outcomes

a) Experimental or simulation based projects

Provide a summary of your results including statistical analysis. Clearly explain how your results were obtained using experimental methods. You will also need to submit the raw data to your supervisors (lab books, data files, etc). Note that you can submit additional data files (200MB limit).

b) Design projects

Provide designs as well as experimental or simulated data that tests how well the design meets specification. Provide a summary of your results including statistical analysis. Clearly explain how your results were obtained using experimental methods. You will also need to submit the raw data to your supervisors (lab books, data files, etc.). Note that you can submit additional data files (200MB limit).

c) Critical Reviews

Provide an in depth critical analysis of the field. The review will need to be an up to date and comprehensive analysis of all of the literature.

Note: This section applies to final report, and to the interim report only if some preliminary work has been completed.

4. Discussion and Conclusions

a) Experimental or simulation based projects:

Critically evaluate the methods and results of your thesis. This includes comparing your results to those obtained in the literature. Interpret your data using statistical inference or simulation validation methods, discussing how well your research addresses stated aims and hypotheses and recommend future studies. Also comment on the novelty and utility of your research and its outcomes.

b) Design projects

Critically evaluate your design making reference to the design specification and measurement of performance. Compare your design with competing technologies. Where appropriate, note how well your devices or software has complied with industry standards, for example what testing would be required for registration by TGA or FDA. Also recommend future design improvements. Comment on the novelty and utility or your design. Is it worth patenting?

c) Critical reviews

Summarise the field making reference to gaps in knowledge that may be addressed by future research and development.

Note: This section applies only to final report.

5. References and Overall Presentation
Marks will be deducted for typographical errors, incorrectly labelled graphs, poor thesis structure, incorrect referencing etc.

Note: This section applies to both Interim Report and to Final Report.

12 APPLICATION FOR EXTENSION FOR THESIS A, B or C

You can apply for **special consideration** when illness or other circumstances interfere with your assessment performance.

Other applications for extension of submission of thesis reports (e.g. equipment breakdown, etc.):

1. Discuss the possibility of an extension with your supervisor first.
2. Requests can then be lodged by the student here http://tinyurl.com/yy2jzpyv. The supervisor will then receive an email asking them to approve, before it is escalated to the decision panel.
3. Request must be lodged by **Week 6** of term.
4. Panel decision will be made by end of **week 7**.
5. The decision will be made by a panel – consisting of the HoS (or their nominee), Thesis Coordinator, and 1 other person.
6. Students should be alerted to the fact that this is not guaranteed, and thus should not rely on getting an extension.
7. Typically, extensions are granted UP TO 3 weeks. The length of the extension needs to be requested and justified by the supervisor. Panel will decide the length of time granted.

13 APPLICATION FOR EXTENSION FOR MASTERS’ PROJECT

You can apply for **special consideration** when illness or other circumstances interfere with your assessment performance.

Other applications for extension of submission of thesis reports (e.g. equipment breakdown, etc.):

1. Discuss the possibility of an extension with your supervisor first.
2. Requests can then be lodged by the student here http://tinyurl.com/yy2jzpyv. The supervisor will then receive an email asking them to approve, before it is escalated to the decision panel.
3. Request must be lodged by **Week 6** of term.
4. The decision will be made by the Thesis Coordinator.
5. Students should be alerted to the fact that this is not guaranteed, and thus should not rely on getting an extension.
6. Typically, extensions are granted UP TO 3 weeks. The length of the extension needs to be requested and justified by the supervisor.
14 PROCEDURE IF YOU FAIL THESIS A,B or C.

Fail in Thesis B – must re-enrol in Thesis B again

Fail in Thesis C – Students have three options.
 1. re-enrol for Thesis A, B and C again, new project and supervisor
 2. re-enrol for Thesis C again, same project - needs consent of an appropriate supervisor & student
 3. Student does further work, re-submits thesis after a max of 6 weeks. Course mark capped at 50%. If still not satisfactory, then needs to re-enrol.

This last option is only available if the original mark was ≥40, OR if the student is in their last semester before graduation (regardless of the original mark).

Fail in Thesis B & C (when taken simultaneously) – Students must re-enrol in Thesis B again, and cannot concurrently enrol in C. They can then take Thesis C when Thesis B has been satisfactorily completed

15 LATE PROCEDURE

In all cases, applications for late submission can be applied for BEFORE the due date. This is at the discretion of the thesis coordinator but should only be granted in exceptional circumstances. As per normal, students can also apply through myUNSW for special consideration.

For Thesis A, B or C, 5 marks will be deducted off the thesis for every day late. Penalty applies until the marks for the course decrease to 50, and further lateness does not result in failure of the course, but might be a failure of the thesis (weekends count as days).

16 INDUSTRY BASED PROJECTS

We encourage students to seek partnerships with industry, so students can have a co-supervisor from industry. However, if confidentiality is required, a confidential disclosure agreement (CDA) is obligatory. The agreement will protect the intellectual property rights of the industry partner, UNSW and the student. Students or academics are not authorised to sign confidential disclosure agreements on behalf of UNSW and are advised to talk to the course coordinator and UNSW legal office to arrange for drafting and signing of the confidential disclosure or research agreement.

17 RELEVANT RESOURCES

All material will be provided via Moodle

18 COURSE EVALUATION AND DEVELOPMENT

Student feedback has helped to shape and develop this course, including feedback obtained from on-line evaluations as part of UNSW’s Course and Teaching Evaluation and Improvement (CATEI) process.

19 DATES TO NOTE

Refer to MyUNSW for Important Dates.
20 PLAGIARISM

Beware! An assignment that includes plagiarised material will receive a 0% Fail, and students who plagiarise may fail the course. Students who plagiarise will have their names entered on plagiarism register and will be liable to disciplinary action, including exclusion from enrolment.

It is expected that all students must at all times submit their own work for assessment. Submitting the work or ideas of someone else without clearly acknowledging the source of borrowed material or ideas, is plagiarism.

All assessments which you hand in must have a Non Plagiarism Declaration Cover Sheet. This is for both individual and group work. Attach it to your assignment before submitting it to the Course Coordinator or at the School Office.

Plagiarism is the use of another person's work or ideas as if they were your own. When it is necessary or desirable to use other people’s material you should adequately acknowledge whose words or ideas they are and where you found them (giving the complete reference details, including page number(s)). The Learning Centre provides further information on what constitutes Plagiarism at:

https://student.unsw.edu.au/plagiarism

21 ACADEMIC ADVICE

- UNSW has a wide range of student support services. The resources listed below should be used by students needing assistance related to aspects of their overall University experience. Specific help regarding this course can be sought from the course coordinator.

 http://www.student.unsw.edu.au/
 https://my.unsw.edu.au/student/howdoi/HowDoI_MainPage.html
 http://www.counselling.unsw.edu.au/

- Those students who have a disability that requires some adjustment in their teaching or learning environment are encouraged to discuss their study needs with the course coordinator prior to, or at the commencement of, their course, or with the Equity Officer (Disability). Issues to be discussed may include access to materials, signers or note-takers, the provision of services and additional exam and assessment arrangements. Early notification is essential to enable any necessary adjustments to be made.

- If you believe that your performance in an assessable component of the course has been affected by illness or another unexpected circumstance, you should make an application for special consideration as soon as possible after the event by visiting UNSW Student Central. Please talk to the course coordinator as well and note that considerations are not granted automatically.

- UNSW has strict policies and expectations relating to Occupational Health and Safety (OHS) accessed at http://www.ohs.unsw.edu.au/