Faculty of Engineering
Graduate School of Biomedical Engineering

Session 2, 2018
BIOM9450 Clinical Information Systems

COURSE DETAILS

<table>
<thead>
<tr>
<th>Units of Credit</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Contact hours</td>
<td>3 hours per week</td>
</tr>
<tr>
<td>Lecture (most weeks)</td>
<td>Monday 18:00 – 19:30</td>
</tr>
<tr>
<td>Tutorial/Laboratory</td>
<td>Monday 19:30 – 21:00</td>
</tr>
<tr>
<td></td>
<td>or Wednesday 15:00 – 16:30</td>
</tr>
<tr>
<td>Course Coordinator</td>
<td>Professor Nigel Lovell</td>
</tr>
<tr>
<td></td>
<td>Room 525, Samuels Building</td>
</tr>
<tr>
<td></td>
<td>Phone 9385 3922</td>
</tr>
<tr>
<td></td>
<td>Email: N.Lovell@unsw.edu.au</td>
</tr>
<tr>
<td>Lecturer</td>
<td>Dr Heba Khamis, h.khamis@unsw.edu.au</td>
</tr>
<tr>
<td>Guest Lecturers</td>
<td>Dr Jim Basilakis, A/Prof Farah Magrabi, Dr Blanca Gallego Luxan</td>
</tr>
<tr>
<td>Demonstrators</td>
<td>Dr Amr Al Abed, amra@unsw.edu.au</td>
</tr>
<tr>
<td></td>
<td>Wanli Xue, z5072849@student.unsw.edu.au</td>
</tr>
</tbody>
</table>

INFORMATION ABOUT THE COURSE

Background
Welcome to “Clinical Information Systems”. This course deals primarily with teaching you an appreciation of “Medical Informatics” (information processing and communications applications in medical care). This is an introductory subject. However, in order to cover the material necessary to give you adequate practical database programming and web publishing skills, you will be required to devote significant amounts of time to reading lecture and reference materials, and to performing the prescribed programming tasks.

Accompanying the lecture program is a substantial set of tutorial and laboratory tasks. We will be teaching the practical component in the ‘Green Room’ Computer Laboratories on the fifth floor of the Samuels building. Outside of formal class times, it will be possible to access this room for work on tutorials and the major project. There are GSBmE guidelines on computer use that need to be followed.

By the end of week 1, accounts will have been set up for you on our Windows file server. Also a private directory for you to safely store your work will be allocated on the server. The laboratories will be accessible using a swipe card system based on your student card. This access will also be arranged during the first two weeks of semester.

BIOM9450 is a 6 UOC course and it is expected that you will devote a minimum of 8 hours per week to this course. In addition to the 3 hours in class, you should spend 5 hours per week reading lecture and reference materials and working on tutorial problems and assignments. This is particularly the case if you have not been exposed to programming, databases or web design.

Presumed knowledge
While no programming or database skills are required, some basic knowledge of HTML, structured query language or web page development would certainly be helpful.

HANDBOOK DESCRIPTION

OBJECTIVES

This subject introduces the field of “medical informatics”. Medical informatics is a developing body of
knowledge and a set of techniques concerning the organizational management of information in support of
medical research, education, and patient care. Medical informatics combines medical science with several
technologies and disciplines in the information and computer sciences and provides methodologies by which
these can contribute to better use of the medical knowledge base and ultimately to better medical care.

TEACHING STRATEGIES

This course consists of integrated lecture and practical work. Problem solving is an essential component of
this subject. A Moodle courseware module has been established for this course. Upcoming tutorial tasks,
discussion groups and lecture notes and resource materials will be made available on this site during
semester. Please look at announcements on Moodle for last minute changes. Assessments and feedback on
practical work will be regularly provided to the students.

For the practical component, and considering the relatively small number of students enrolled in this elective
subject, more effective learning can be achieved by replacing formal lectures on computer applications with
self-directed learning tasks. We shall be teaching PHP scripting software along with some basic Javascript
and HTML. You will be given a package containing a set of tasks and accompanying resources (including
textbooks, on-line help, web references, etc.). To make effective use of the package and your time you must
read the lecture notes and relevant references before the corresponding laboratory and decide which areas
you are having difficulty in understanding or which areas require further explanation.

Be aware that any computer-based task is a skill that needs time and practice to develop. Even though it is
important to read a textbook on databases and web-publishing and to discuss concepts in lectures, there is
no substitute for hands-on computing.

RELATIONSHIP TO OTHER COURSES

BIOM9450 is one of the few courses in GSBmE that deals with computing and informatics. Other courses
that deal with more analytical aspects of biomedical computing include BIOM9621 (Biological Signal
Analysis) and BIOM9711 (Modelling Organs, Tissues and Devices) that provides a practical overview of
computational modelling in bioengineering, focusing on a range of applications including electrical
stimulation of neural and cardiac tissues.

EXPECTED LEARNING OUTCOMES

On completion of this course, the student should have gained knowledge, concepts and skills in the
following areas. Note that Learning outcomes are annotated as Ln and these are cross-referenced in the
Assessment schedule.

Knowledge (L1)

• Fundamental understanding of the subject matter of medical informatics including an overview of the use
 of computers and information in health care and a knowledge of common standards
• Aspects of medical data including
 – Acquisition of data from patients
 – Processing and storing of data in computers
 – Vocabularies, coding and classification of data
 – Processing and manipulation of data to create knowledge
 – Evidence base / guidelines in arriving at clinical decisions
• Systems in medicine and health care including
 – Patient-centered information systems
 – Knowledge and clinical decision support
• Methodological aspects of informatics including
 – Information processing and information systems
 – Cost benefits, security issues and technology evaluation

Concepts (L2)

• Understanding the differences between data, information and knowledge as it applies to medicine
• Application of models as a framework for the discipline of medical informatics
• Advantages of different database topologies and network schemes

Skills (L3)
Familiarity with Relational Database programs including Microsoft Access.
Programming skills using Structured Query Language (SQL).
Developing and publishing web pages in HTML using Adobe Dreamweaver software.
Dynamic web page creation by linking ODBC compliant databases with HTML through SQL.
Programming skills in the PHP scripting language.
Programming skills in Javascript.

These learning outcomes relate most strongly to the following UNSW graduate outcomes. Scholars who are:
- understanding of their discipline in its interdisciplinary context
- capable of independent and collaborative enquiry
- rigorous in their analysis, critique and reflection
- able to apply their knowledge and skills to solving problems
- information and digitally literate

As well the learning outcomes foster professionals who are capable of independent, self-directed practice and they are also moderately related to fostering leaders who are capable of being enterprising, innovative and creative.

ASSESSMENT

There will be hand-in tutorial questions, end of semester quiz+computer exam and a major project. There will also be a final examination consisting of both qualitative and quantitative short-answer questions. The following criteria will be applied in assessing your work:

- evidence of critical understanding of the concepts developed in the course
- ability to apply these concepts to a range of software problems
- clarity of description, explanation and attention to the focus of the assessment task
- degree to which the material submitted for assessment addresses the specified requirements

<table>
<thead>
<tr>
<th>Assessment</th>
<th>Contribution</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tutorials/Hand in Questions</td>
<td>20%</td>
<td>A major aspect of this course is practical computing skills. You will complete practicals and hand in assessments in the areas of database design, structured query language, Javascript and HTML and dynamic web page development (PHP). Assignments should be submitted on time. Marks may be deducted for late submission without prior approval. Learning outcomes focus on L3 but also include aspects of L2 and L1. Related graduate capabilities include: • understanding of the discipline in its interdisciplinary context • rigorous in analysis, critique and reflection • able to apply knowledge and skills to solving problems • information and digitally literate</td>
</tr>
<tr>
<td>Exam</td>
<td>40%</td>
<td>An exam is scheduled at the end of semester. It comprises part written exam (10%) and part computer-based practical exam (30%). This assessment is a direct test of the degree to which the knowledge based learning outcomes listed above have been achieved. If you have successfully completed the practical component of the course then you should have no difficulty with the computer-based exam. Similarly, the written component of the exam should present no problems to people who have attended and participated in the lectures. Learning outcomes are primarily L1 for the written part and L3 for the computer-based part. Related graduate capabilities include: • understanding of the discipline in its interdisciplinary context • rigorous in analysis, critique and reflection • able to apply knowledge and skills to solving problems • capable of independent and collaborative enquiry</td>
</tr>
</tbody>
</table>
| Project | 40% | A major assessment component of this course is a computer-based project that integrates information form the lectures and practicals to produce a workable system that encompasses one aspect of a medical information system. This assessment is a direct test of the degree to which the knowledge based learning outcomes listed above
can be practically applied. Learning outcomes are primarily L3.

Related graduate capabilities include:
• capable of independent, self-directed practice
• capable of being enterprising, innovative and creative

RELEVANT RESOURCES

Moodle is the main resource for this course. There is no prescribed text but useful reference books include:

- “Medical informatics: computer applications in health care and biomedicine”, Wiederhold et al. (2001) (MB610.285/23 B)
- “Handbook of Medical Informatics” J. van Bemmel, M. Mussen (Eds) (1997) (MB610.285/43)
- Many web resources on “Medical Informatics” or “Health Informatics”
- HTML guides http://www.htmlgoodies.com/primers/html
- PHP Tutorial http://devzone.zend.com/tag/PHP101 (numerous other web resources exist)

COURSE EVALUATION AND DEVELOPMENT

Anonymous student feedback on the course and the lecturers in the course is gathered periodically using the university's myExperience Process. Your feedback is much appreciated and taken very seriously. Continual improvements are made to the course based in part on such feedback and this helps us to improve the course for future students.

In the past, students suggested that they needed more time for completing practical work and many felt that they would benefit more from open-source or more accessible tools. PHP scripting language is used for dynamic web page creation. The use of PHP received positive responses because it is open source and commonly used. However we recognised that there is a great deal to learn so we will place more emphasis on PHP and less on other programming tasks such as Javascript. We will also move the computer-based quiz from Week 13 to the exam block to give more time for completing the major project.

DATES TO NOTE

Refer to MyUNSW for Important Dates available at:
https://my.unsw.edu.au/student/resources/KeyDates.html

PLAGIARISM

Beware! An assignment that includes plagiarised material will receive a 0% Fail, and students who plagiarise may fail the course. Students who plagiarise will have their names entered on plagiarism register and will be liable to disciplinary action, including exclusion from enrolment.

It is expected that all students must at all times submit their own work for assessment. Submitting the work or ideas of someone else without clearly acknowledging the source of borrowed material or ideas, is plagiarism.

All assessments which you hand in must have a Non Plagiarism Declaration Cover Sheet. This is for both individual and group work. Attach it to your assignment before submitting it to the Course Coordinator or at the School Office.
Plagiarism is the use of another person’s work or ideas as if they were your own. When it is necessary or desirable to use other people’s material you should adequately acknowledge whose words or ideas they are and where you found them (giving the complete reference details, including page number(s)). The Learning Centre provides further information on what constitutes Plagiarism at:

https://student.unsw.edu.au/plagiarism

<table>
<thead>
<tr>
<th>ACADEMIC ADVICE</th>
</tr>
</thead>
<tbody>
<tr>
<td>For information about:</td>
</tr>
<tr>
<td>• Notes on assessments and plagiarism,</td>
</tr>
<tr>
<td>• Special Considerations,</td>
</tr>
<tr>
<td>• School Student Ethics Officer, and</td>
</tr>
<tr>
<td>• BESS</td>
</tr>
<tr>
<td>Refer to the School website available at:</td>
</tr>
<tr>
<td>http://www.engineering.unsw.edu.au/biomedical-engineering/</td>
</tr>
<tr>
<td>Wk</td>
</tr>
<tr>
<td>----</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td>5</td>
</tr>
<tr>
<td>6</td>
</tr>
<tr>
<td>7</td>
</tr>
<tr>
<td>8</td>
</tr>
<tr>
<td>9</td>
</tr>
<tr>
<td>10</td>
</tr>
<tr>
<td>11</td>
</tr>
<tr>
<td>12</td>
</tr>
<tr>
<td>12</td>
</tr>
</tbody>
</table>