BIOM9660 Implantable Bionics

Session 2, 2016

COURSE DETAILS

- **Units of Credit**: 6
- **Contact hours**: 3 hours per week lecture, 3 hours per week laboratory most weeks (see timetable in the Moodle portal at http://moodle.telt.unsw.edu.au)
- **Class**: Thursdays, 15:00 – 18:00 Ainsworth Building G02 (K-J17-G02)
- **Laboratory**: Wednesday, 10:00 – 13:00 518, Samuels Building
 Wednesday, 14:00 – 17:00 518, Samuels Building
- **Course Coordinator**: Professor Gregg J Suaning
 - email: g.suaning@unsw.edu.au
 - office: Samuels 5.10
 - phone: 9385 3892
- **Demonstrators**: Mr. Greg Watkins – PhD Candidate, UNSW
 - email: greg.watkins@student.unsw.edu.au

INFORMATION ABOUT THE COURSE

Welcome to “Implantable Bionics”. This course aims to provide the students with the appropriate background theory and knowledge of therapeutic, implantable bionic devices.

Australia has a rich history in implantable bionics that can be traced back to the world's first attempt at an implantable “bionic eye” in the 1950’s, to world-leading cardiac pacemaker and defibrillator technologies, to the remarkable cochlear implant that has restored the sense of hearing to tens of thousands of people. The aim of this course is to pass along the knowledge and experiences from the people involved in the research and development of these devices to the students who we hope will form the next generation of biomedical engineers who will perpetuate Australia's leading role in the field of implantable bionics.

By the end of the course you should have a fundamental understanding of the important factors that dictate the success or failure of neural interfaces and implantable electronics. You should also be qualified to advise on the choices available for a given therapeutic application and the advantages and disadvantages of each alternative.

It is natural for engineers from particular disciplines to migrate to their 'comfort zone' when approaching the design of a medical implant. For instance, the electrical engineer will tend to concentrate on implant circuitry whereas the materials engineer is more likely to have an interest in implant bio-packaging or bio-electrodes. This course is for biomedical engineers from various backgrounds and disciplines. An important objective of the course is to gain working knowledge of and confidence to operate in a broad range of topics within the field of implantable bionics, and to highlight the opportunities of working or conducting research in this field when the 'comfort zones' are broadened.

In this course we explore the types of implantable bionics in clinical application and research. Key factors that determine the success or failure of a particular device will be studied, and fundamental theory and background knowledge will be conveyed through a series of lectures and laboratory exercises.
OBJECTIVES

The objectives of this course are to:

- introduce students to the fundamentals of implantable bionics as it relates to understanding therapeutic sensory and functional neural stimulation;
- understand the principles which govern the application of electrical neural stimulation and the design of instruments to be used for this purpose; and,
- understand various applications of therapeutic electrical neural stimulation including the underlying biological process that dictate the success or failure of such devices.

TEACHING STRATEGIES

This course consists of lecture, tutorial and practical work. Each week there will be a lecture of up to three hours duration, and throughout the semester the principles of the lecture will be reinforced through a laboratory session or sessions. Students will work on problems both individually and in groups.

Students enrolled in the course will be given access to a course module using UNSW Moodle (http://telt.unsw.edu.au/) where course material will be placed in order to comply with University policies, and will be where all marks will be posted. The primary contact method shall be via each student's university e-mail account. It is up to the student to ensure that their university e-mail account is maintained below any quotas, and is checked regularly or forwarded to an e-mail account that is checked regularly. Assessments and feedback on work will be regularly provided to the students.

EXPECTED LEARNING OUTCOMES

On completion of this course, the student should:

- have a broad understanding of the scope of implantable bionics and its applications;
- understand the fundamentals of electrical neural stimulation;
- be able to discuss, develop and apply concepts and principles to a range of problems and therapeutic medical applications involving implantable bionics;
- appreciate the complexities and specific challenges of life-long implantable device design;
- critically review the literature in the area and apply knowledge gained from the course to analyse implantable bionic devices; and,
- clearly summarise and communicate findings from literature, course material, and one's own work using oral and written methods.

These learning outcomes relate most strongly to the following UNSW graduate outcomes:

- scholarly enquiry;
- engagement with the relevant disciplinary knowledge;
- critical thinking and creative problem solving; and,
- collaborative and multidisciplinary work.

They are also moderately related to:

- information literacy; enterprise, initiative and creativity.

For each hour of contact it is expected that you will put in at least 1.5 hours of private study.

ASSESSMENT

Before detailing the assessment items in this course, it is prudent to describe the philosophy of assessment that will be applied.
First, deadlines are deadlines, not guidelines or suggestions so the student is required to hand-in all assessment items on-time if they expect to obtain credit for them. There are cases where legitimate and serious circumstances preclude one from accomplishing something by a particular time, but these are rare and obvious, and can be dealt with on a case-by-case basis. Please ensure that all work is submitted by the due date and time as late submissions will require evidence of the aforementioned ‘rare and obvious’ circumstances. Extensions will be given only in these extraordinary cases.

Second, keeping up in this course is crucial. There is a great deal of material to cover, and a limited time in which to cover it. For this reason, assessment events will be frequent and so will require that the student stays on top of course material at all times throughout the semester. If a lecture is missed, ensure that notes are obtained by other means. Slides for most lectures will be made available and, importantly, as in most circumstances this is not a competitive course (i.e. you will be assessed individually and not relative to others in the course) sharing of notes and open discussion of course material is encouraged, but unless otherwise stated, all work submitted for assessment must be your own, unique and original work. Failure to comply can result in a zero mark for the assessment task.

After week one, a weekly quiz will be given in most of the lecture sessions. These will be administered promptly at the start of the lecture period and will be of approximately 15 minutes duration. Students are expected to prepare for each quiz by studying the lecture material from the previous weeks, and any laboratory material for the current week. Short answer or multiple choice questions will be the norm, and the aim will be to assess the student's understanding of the material from the previous week's lecture, and their preparation for the laboratory tasks of the current week.

Be advised that once a concept is introduced to the course, it may appear on any assessment event from that point onward. For instance, if a concept is introduced during week 1, a question on that concept could be on a quiz in week 11 (or any other week after week 1).

To compensate for the occasional mishap or unforeseen circumstance, the lowest score of the (up to) 11 quizzes will be excluded from the calculation of the overall quiz mark. The overall quiz mark will be calculated as follows:

(a) each quiz mark will be expressed as a percentage;
(b) all quiz marks with the exception of the lowest mark will be added together;
(c) the number calculated in (b) will be divided by one less than the total number of quizzes.

PLEASE NOTE: item (b) above takes into account unforeseen circumstances. In other words, once during the semester you may miss, fail or otherwise receive a poor mark on ONE AND ONLY ONE quiz and it will not count towards your overall mark in the course. If you miss, fail or otherwise receive a poor mark on any other quiz, it will count towards your mark and there is no avenue available that allows for a re-sit of a quiz. Students who arrive late for a given quiz, but before it is completed, may take the quiz although it must be handed in at the same time as all other students. It is therefore in the best interests of the student to arrive on time for the quiz.

Quizzes are NOT returned to the students although the solutions will be worked through in the lecture in most cases (time permitting).

A comprehensive project on the topic relating to neurostimulation will form an integral requirement of the course. The details of this major assignment will be provided in the first weeks of the course.

At the end of the semester, there will be a final examination consisting of both qualitative and quantitative multiple choice, short- and long-answer questions.

The following criteria will be applied in assessing your work:

- evidence of critical understanding of the concepts developed in the course
- ability to apply these concepts to a range of problems pertaining to implantable bionics
- clarity of description, explanation and attention to the focus of the assessment task
- degree to which the material submitted for assessment addresses the specified requirements
ASSIGNMENTS

<table>
<thead>
<tr>
<th>Assessment Task</th>
<th>Contribution to Mark</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quizzes (lowest score of all quizzes are disregarded)</td>
<td>30%</td>
<td>A quiz is scheduled at the beginning of most lectures after the first lecture. Each quiz will be comprised of short answer questions and/or multiple choice questions in a format similar to the final exam. The aims of this assessment are to encourage the students to revise, on a regular basis throughout the course, encourage preparation for laboratories, and to allow students to gauge their progress in different topics and receive feedback on that progress. These quizzes represent a direct test of the degree to which the knowledge based learning outcomes listed above have been achieved.</td>
</tr>
<tr>
<td>Major Report</td>
<td>30%</td>
<td>Each student will submit a Major Report on a topic relating to neuromodulation. Details will be provided in the first weeks of the course. The Major Report will be due on or after Week 9 on a specific date to be specified.</td>
</tr>
<tr>
<td>Final Exam</td>
<td>40%</td>
<td>The final exam may be made up of any of the following: true/false, multiple choice, matching, short answer and essay questions. The aims of this assessment are to encourage students to review the entire course - including laboratory work and to allow students to apply all the knowledge disseminated to solve problems. This assessment is a direct test of the degree to which the knowledge based learning outcomes listed above have been achieved.</td>
</tr>
</tbody>
</table>

COURSE PROGRAM

A detailed course program is provided at the top of the BIOM9660 Moodle portal to which all students have access via http://moodle.telt.unsw.edu.au

RELEVANT RESOURCES

UNSW Moodle will be used as the primary source of information and communication of marks and obligatory material that is required in order to comply with UNSW directives. This resource can be found here: http://telt.unsw.edu.au/

Several useful reference books are held in the UNSW Library and others on-line. Two of particular relevance to this course are:

and,

DATES TO NOTE

Refer to MyUNSW for Important Dates available at:

https://my.unsw.edu.au/student/resources/KeyDates.html
PLAGIARISM

Beware! An assignment that includes plagiarised material will receive a 0% Fail, and students who plagiarise may fail the course. Students who plagiarise will have their names entered on plagiarism register and will be liable to disciplinary action, including exclusion from enrolment.

It is expected that all students must at all times submit their own work for assessment. Submitting the work or ideas of someone else without clearly acknowledging the source of borrowed material or ideas, is plagiarism.

All assessments which you hand in must have a Non Plagiarism Declaration Cover Sheet. This is for both individual and group work. Attach it to your assignment before submitting it to the Course Coordinator or at the School Office.

Plagiarism is the use of another person’s work or ideas as if they were your own. When it is necessary or desirable to use other people’s material you should adequately acknowledge whose words or ideas they are and where you found them (giving the complete reference details, including page number(s)). The Learning Centre provides further information on what constitutes Plagiarism at:

https://student.unsw.edu.au/plagiarism

ACADEMIC ADVICE

For information about:

- Notes on assessments and plagiarism,
- Special Considerations,
- School Student Ethics Officer, and
- BESS

Refer to the School website available at:

http://www.engineering.unsw.edu.au/biomedical-engineering/