MANF9544

CONCURRENT PRODUCT AND PROCESS DESIGN
Contents

1. Staff contact details .. 2
 Contact details and consultation times for course convenor ... 2
 Contact details and consultation times for additional lecturers/demonstrators/lab staff 2
2. Important links .. 2
3. Course details .. 2
 Credit points ... 2
 Contact hours ... 2
 Summary and Aims of the course .. 3
 Student learning outcomes ... 3
4. Teaching strategies ... 3
5. Course schedule ... 4
6. Assessment ... 5
 Assessment overview ... 5
 Assignments .. 6
 Presentation .. 6
 Submission ... 6
 Marking ... 6
 Examinations .. 6
 Calculators ... 7
 Special consideration and supplementary assessment ... 7
7. Expected resources for students ... 7
 Textbooks .. 7
 Suggested Additional Readings ... 7
8. Course evaluation and development ... 8
9. Academic honesty and plagiarism .. 8
10. Administrative matters and links .. 9
Appendix A: Engineers Australia (EA) Competencies .. 10
1. Staff contact details

Contact details and consultation times for course convenor

Name: Prof Sami Kara
Office location: Ainsworth Building, 301A
Tel: (02) 9385 5757
Email: S.Kara@unsw.edu.au

Consultation concerning this course is available on Tuesday 1300 –1700 whenever the lecturer is not otherwise engaged.

Contact details and consultation times for additional lecturers/demonstrators/lab staff

Name: Dr Shiva Abdoli
Office location: Ainsworth Building, 301
Tel: (02) 9385 6851
Email: s.abdoli@unsw.edu.au

Please see the course Moodle.

2. Important links

- Moodle
- Lab Access
- Computing Facilities
- Student Resources
- Course Outlines
- Engineering Student Support Services Centre

3. Course details

Credit points

This is a 6 unit-of-credit (UoC) course, and involves 3 hours per week (h/w) of face-to-face contact.

Contact hours

<table>
<thead>
<tr>
<th>Day</th>
<th>Time</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lectures</td>
<td>Tuesday</td>
<td>6pm – 8pm</td>
</tr>
<tr>
<td>Demonstrations</td>
<td>Tuesday</td>
<td>8pm – 9pm</td>
</tr>
</tbody>
</table>
Summary and Aims of the course

This course introduces the core activities of concurrent development of products, processes, systems, and quality. Therefore, this course is a core part of the MEngSc program in Manufacturing Management and relates its contents to other courses in the program, such as Manufacturing Strategies, Managing Manufacturing Operations and Production Technologies.

The need for companies to develop products that the customer wants and to do this in the shortest possible time has become one of the main success factors on the market. Concurrent Product and Process Development is one of the key strategies that address this problem of fast product development and customer satisfaction by taking into account economic and environmental objectives. It needs new techniques and design tools to be adopted, and it requires a change of the traditional departmental separation of tasks in a company.

Therefore, this course aims to provide an understanding of the integrative nature of concurrent product and process development in a team work environment, and how it affects all subsequent activities in production.

Student learning outcomes

This course is designed to address the learning outcomes below and the corresponding Engineers Australia Stage 1 Competency Standards for Professional Engineers as shown. The full list of Stage 1 Competency Standards may be found in Appendix A.

After successfully completing this course, you should be able to:

<table>
<thead>
<tr>
<th>Learning Outcome</th>
<th>EA Stage 1 Competencies</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Have gained knowledge in the interdisciplinary field of concurrent product development.</td>
<td>PE1.3, PE1.5</td>
</tr>
<tr>
<td>2. Have gained the capacity for critical thinking and problem solving, have experienced collaborative and multi-disciplinary work.</td>
<td>PE2.3, PE3.6</td>
</tr>
<tr>
<td>3. Learned to appreciate the difficulties of change, and acquired skills of effective communication.</td>
<td>PE2.3, PE3.6</td>
</tr>
<tr>
<td>4. Have gained knowledge in the inter-disciplinary field of concurrent product development.</td>
<td>PE1.3, PE1.5</td>
</tr>
</tbody>
</table>

4. Teaching strategies

The subject will be presented in the form of lectures and problem-solving classes. Each weekly class will consist of a 1-1.5 hrs lecture followed by a problem solving class example or case study related to the material covered in the lecture
5. Course schedule

<table>
<thead>
<tr>
<th>Week</th>
<th>Topic</th>
<th>Demonstration/Lab Content</th>
<th>Location</th>
<th>Suggested Readings</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Introduction and definitions</td>
<td></td>
<td>Ainsworth 202</td>
<td>Lecture notes on Moodle</td>
</tr>
<tr>
<td>2</td>
<td>Product Development and Time-to-Market Concept</td>
<td>Trade-off Analysis in Product Development Exercise</td>
<td>Ainsworth 202</td>
<td>Lecture notes and reading material on Moodle</td>
</tr>
<tr>
<td>3</td>
<td>Quality Function Deployment</td>
<td>QFD Exercise</td>
<td>Ainsworth 202</td>
<td>Lecture notes on Moodle</td>
</tr>
<tr>
<td>4</td>
<td>Design for Manufacture (DFM)</td>
<td>None</td>
<td>Ainsworth 202</td>
<td>Lecture notes and reading material on Moodle</td>
</tr>
<tr>
<td>5</td>
<td>Design for Assembly (DFA)</td>
<td>DFA Exercise (a pump case)</td>
<td>Ainsworth 202</td>
<td>Lecture notes and reading material on Moodle</td>
</tr>
<tr>
<td>6</td>
<td>Design for Environment (DFE)</td>
<td>Trade-off Analysis</td>
<td>Ainsworth 202</td>
<td>Lecture notes and reading material on Moodle</td>
</tr>
<tr>
<td>7</td>
<td>Manufacturing System Design</td>
<td>Assembly Sequence Generation Exercise</td>
<td>Ainsworth 202</td>
<td>Lecture notes and reading material on Moodle</td>
</tr>
<tr>
<td>8</td>
<td>Rapid Prototyping and Additive Manufacturing</td>
<td>None</td>
<td>Ainsworth 102</td>
<td>Lecture notes and reading material on Moodle</td>
</tr>
<tr>
<td>9</td>
<td>Organisation, Management and Operating of CE Teams</td>
<td>Team Problem Solving Exercise</td>
<td>Ainsworth 202</td>
<td>Lecture notes on Moodle</td>
</tr>
<tr>
<td>10</td>
<td>CE Practices and case studies (Possible Industry speaker)</td>
<td>None</td>
<td>Ainsworth 202</td>
<td>None</td>
</tr>
</tbody>
</table>
6. Assessment

Assessment overview

<table>
<thead>
<tr>
<th>Assessment</th>
<th>Group Project?</th>
<th>If Group, # Students per group</th>
<th>Length</th>
<th>Weight</th>
<th>Learning outcomes assessed</th>
<th>Assessment criteria</th>
<th>Due date and submission requirements</th>
<th>Deadline for absolute fail</th>
<th>Marks returned</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group assignment 1</td>
<td>Yes</td>
<td>4</td>
<td>1000 words</td>
<td>15%</td>
<td>1, 2, 3 and 4</td>
<td>Topics assessed include Quality Function Deployment</td>
<td>Will be released on the 5th March and submission on the 17th March via Moodle</td>
<td>Midnight Sunday 24th March</td>
<td>Two weeks after submission</td>
</tr>
<tr>
<td>Group assignment 2</td>
<td>Yes</td>
<td>4</td>
<td>5000 words</td>
<td>45%</td>
<td>1, 2, 3, and 4</td>
<td>Topics assessed include Quality Function Deployment</td>
<td>Will be released on the 17th March and submission on the 2nd April via Moodle</td>
<td>Midnight Sunday 7th April</td>
<td>Two weeks after submission</td>
</tr>
<tr>
<td>Test 1</td>
<td>No</td>
<td>N/A</td>
<td>90 min</td>
<td>40%</td>
<td>1 and 4</td>
<td>Lecture material from week 1 to 8</td>
<td>In week 9, during the class</td>
<td>N/A</td>
<td>Two weeks after the test</td>
</tr>
</tbody>
</table>
Assignments

The assessment tasks will be provided during the class on the dates described in the
Assessment overview table. The assessment tasks and their detail will be provided on

Presentation

All non-electronic submissions should have a standard School cover sheet, which is
available from this course’s Moodle page.

All submissions are expected to be neat and clearly set out. Your results are the pinnacle of
all your hard work and should be treated with due respect. Presenting results clearly gives
the marker the best chance of understanding your method; even if the numerical results are
incorrect.

Submission

Work submitted late without an approved extension by the course coordinator or delegated
authority is subject to a late penalty of 20 percent (20%) of the maximum mark possible for
that assessment item, per calendar day.

The late penalty is applied per calendar day (including weekends and public holidays) that
the assessment is overdue. There is no pro-rata of the late penalty for submissions made
part way through a day.

Work submitted after the ‘deadline for absolute fail’ is not accepted and a mark of zero will
be awarded for that assessment item.

For some assessment items, a late penalty may not be appropriate. These are clearly
indicated in the course outline, and such assessments receive a mark of zero if not
completed by the specified date. Examples include:

a. Weekly online tests or laboratory work worth a small proportion of the subject mark,
or
b. Online quizzes where answers are released to students on completion, or

c. Professional assessment tasks, where the intention is to create an authentic
assessment that has an absolute submission date, or

d. Pass/Fail assessment tasks.

Marking

Marking guidelines for assignment submissions will be provided at the same time as
assignment details to assist with meeting assessable requirements. Submissions will be
marked according to the marking guidelines provided.

Examinations

You must be available for all tests and examinations in this course. Final examinations for
each course are held during the University examination periods: February for Summer Term, May for T1, August for T2, and November/December for T3.

Please visit myUNSW for Provisional Examination timetable publish dates.

For further information on exams, please see the Exams webpage.

Calculators

You will need to provide your own calculator of a make and model approved by UNSW for the examinations. The list of approved calculators is available at student.unsw.edu.au/exam-approved-calculators-and-computers

It is your responsibility to ensure that your calculator is of an approved make and model, and to obtain an “Approved” sticker for it from the Engineering Student Supper Services Centre prior to the examination. Calculators not bearing an “Approved” sticker will not be allowed into the examination room.

Special consideration and supplementary assessment

If you have experienced an illness or misadventure beyond your control that has interfered with your assessment performance, you are eligible to apply for Special Consideration. For details of applying for Special Consideration and conditions for the award of supplementary assessment, please see the information on UNSW’s Special Consideration page.

7. Expected resources for students

Textbooks

A subject manual will be uploaded on the Moodle as a softcopy. This manual includes all the necessary lecture materials and the readings at the end of each unit. Since the manual was updated recently, the previous version of the manual is not recommended. Copies of the current version are also available at the library for student barrowing.

Suggested Additional Readings

UNSW Library website: https://www.library.unsw.edu.au/

8. Course evaluation and development

Feedback on the course is gathered periodically using various means, including the UNSW myExperience process, informal discussion in the final class for the course, and the School’s Student/Staff meetings. Your feedback is taken seriously, and continual improvements are made to the course based, in part, on such feedback.

In this course, recent improvements resulting from student feedback include better tutorial content, assessment procedure.

9. Academic honesty and plagiarism

UNSW has an ongoing commitment to fostering a culture of learning informed by academic integrity. All UNSW students have a responsibility to adhere to this principle of academic integrity. Plagiarism undermines academic integrity and is not tolerated at UNSW. *Plagiarism at UNSW is defined as using the words or ideas of others and passing them off as your own.*

Plagiarism is a type of intellectual theft. It can take many forms, from deliberate cheating to accidentally copying from a source without acknowledgement. UNSW has produced a website with a wealth of resources to support students to understand and avoid plagiarism, visit: student.unsw.edu.au/plagiarism. The Learning Centre assists students with understanding academic integrity and how not to plagiarise. They also hold workshops and can help students one-on-one.

You are also reminded that careful time management is an important part of study and one of the identified causes of plagiarism is poor time management. Students should allow sufficient time for research, drafting and the proper referencing of sources in preparing all assessment tasks.

If plagiarism is found in your work when you are in first year, your lecturer will offer you assistance to improve your academic skills. They may ask you to look at some online
resources, attend the Learning Centre, or sometimes resubmit your work with the problem fixed. However more serious instances in first year, such as stealing another student’s work or paying someone to do your work, may be investigated under the Student Misconduct Procedures.

Repeated plagiarism (even in first year), plagiarism after first year, or serious instances, may also be investigated under the Student Misconduct Procedures. The penalties under the procedures can include a reduction in marks, failing a course or for the most serious matters (like plagiarism in an honours thesis) even suspension from the university. The Student Misconduct Procedures are available here: www.gs.unsw.edu.au/policy/documents/studentmisconductprocedures.pdf

10. Administrative matters and links

All students are expected to read and be familiar with School guidelines and polices, available on the intranet. In particular, students should be familiar with the following:

- Attendance
- UNSW Email Address
- Computing Facilities
- Special Consideration
- Exams
- Approved Calculators
- Academic Honesty and Plagiarism
- Student Equity and Disabilities Unit
- Health and Safety
- Lab Access
- Makerspace
- UNSW Timetable
- UNSW Handbook
- UNSW Mechanical and Manufacturing Engineering
Appendix A: Engineers Australia (EA) Competencies

Stage 1 Competencies for Professional Engineers

<table>
<thead>
<tr>
<th>PE1: Knowledge and Skill Base</th>
<th>Program Intended Learning Outcomes</th>
</tr>
</thead>
<tbody>
<tr>
<td>PE1.1</td>
<td>Comprehensive, theory-based understanding of underpinning fundamentals</td>
</tr>
<tr>
<td>PE1.2</td>
<td>Conceptual understanding of underpinning maths, analysis, statistics, computing</td>
</tr>
<tr>
<td>PE1.3</td>
<td>In-depth understanding of specialist bodies of knowledge</td>
</tr>
<tr>
<td>PE1.4</td>
<td>Discernment of knowledge development and research directions</td>
</tr>
<tr>
<td>PE1.5</td>
<td>Knowledge of engineering design practice</td>
</tr>
<tr>
<td>PE1.6</td>
<td>Understanding of scope, principles, norms, accountabilities of sustainable engineering practice</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PE2: Engineering Application Ability</th>
<th>Program Intended Learning Outcomes</th>
</tr>
</thead>
<tbody>
<tr>
<td>PE2.1</td>
<td>Application of established engineering methods to complex problem solving</td>
</tr>
<tr>
<td>PE2.2</td>
<td>Fluent application of engineering techniques, tools and resources</td>
</tr>
<tr>
<td>PE2.3</td>
<td>Application of systematic engineering synthesis and design processes</td>
</tr>
<tr>
<td>PE2.4</td>
<td>Application of systematic approaches to the conduct and management of engineering projects</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PE3: Professional and Personal Attributes</th>
<th>Program Intended Learning Outcomes</th>
</tr>
</thead>
<tbody>
<tr>
<td>PE3.1</td>
<td>Ethical conduct and professional accountability</td>
</tr>
<tr>
<td>PE3.2</td>
<td>Effective oral and written communication (professional and lay domains)</td>
</tr>
<tr>
<td>PE3.3</td>
<td>Creative, innovative and pro-active demeanour</td>
</tr>
<tr>
<td>PE3.4</td>
<td>Professional use and management of information</td>
</tr>
<tr>
<td>PE3.5</td>
<td>Orderly management of self, and professional conduct</td>
</tr>
<tr>
<td>PE3.6</td>
<td>Effective team membership and team leadership</td>
</tr>
</tbody>
</table>