Undergraduate Course Outline

MINE4250
Hardrock Mine Design and Feasibility Project
Session One, 2016

Associate Professor Serkan Saydam
E: s.saydam@unsw.edu.au
CONTENTS

1. INFORMATION ABOUT THE COURSE .. 2
2. AIMS, LEARNING OUTCOMES AND GRADUATE ATTRIBUTES .. 3
3. REFERENCE RESOURCES ... 4
4. COURSE CONTENT AND LEARNING ACTIVITIES .. 5
5. COURSE ASSESSMENT ... 6
6. ASSESSMENT CRITERIA .. 7
7. STUDYING A UG COURSE IN MINING ENGINEERING AT UNSW ... 10

Document Management:
Filename: CourseOutline_MINE 4250_S1_20160208_V1.2
Date last update: 18 Feb 2016
Changes made by: S Saydam
Revision number: V1.1

MINE 4250: Hardrock Mine Design and Feasibility Project-S1-2016 1 | P a g e
1. INFORMATION ABOUT THE COURSE

<table>
<thead>
<tr>
<th>Course Code:</th>
<th>MINE 4250</th>
<th>Semester:</th>
<th>S1, 2016</th>
<th>Level:</th>
<th>UG</th>
<th>Units/Credits</th>
<th>6 UOC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Course Name:</td>
<td>Hardrock Mine Design and Feasibility Project</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course Convenor:</th>
<th>Associate Professor Serkan Saydam</th>
</tr>
</thead>
<tbody>
<tr>
<td>Contact Details</td>
<td>School of Mining Engineering Old Main Building, Rm 159H</td>
</tr>
<tr>
<td></td>
<td>EMAIL: s.saydam@unsw.edu.au</td>
</tr>
<tr>
<td></td>
<td>Phone: +61 2 9385 4525</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Contact times</th>
<th>Contact times are scheduled for:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>• Thursday 10:00am – 2:00pm, Myers Theatre</td>
</tr>
</tbody>
</table>

1.1. Course Description

Development of a pre-feasibility study for a metalliferous mining project. Activities include: assessment of reserves, method selection, layout and optimisation of surface and underground operations, geotechnical design, ventilation design, project risk assessment, mine scheduling, equipment selection, cost estimation, economics/finance and sustainability. Usage of mine design and optimisation software packages.

1.2. Course Completion

Course completion requires:
- submission of all assessment items; failure to submit all assessment items will result in the award of an Unsatisfactory Failure (UF) grade for the Course.

1.3. Assumed Knowledge

Students should have sufficient knowledge to apply the principles of resource geology, resource estimation, mine planning and design, surface and underground mining methods, minerals economics and equipment selection.
2. AIMS, LEARNING OUTCOMES AND GRADUATE ATTRIBUTES

2.1. Course Aims

The aim of this course is to introduce students to the principles of mine feasibility studies for metalliferous mine deposit. In this course students should be able to develop skills for optimal mine design, scheduling and preparation of a pre-feasibility study document.

2.2. Learning Outcomes

It is intended that students will be able to:
1. Develop high level of mine design knowledge taking into account:
 • Data analysis and interpretation
 • Mine optimisation utilising geometrical, geotechnical and economical design parameters
 • Mine layout
 • Scheduling
2. Development and production planning, equipment selection,
3. Geomechanics and Ventilation,
4. Economic evaluation,
5. Learn and apply mine design and optimisation software packages,
6. Demonstrate team skills in the management of mining projects and advanced written and oral communication skills.

2.3. BE (Hons) Program Learning Outcomes

1. Comprehensive, theory based understanding of the underpinning natural and physical sciences and the engineering fundamentals applicable to the engineering discipline.
2. Conceptual understanding of the mathematics, numerical analysis, statistics, and computer and information sciences which underpin the engineering discipline.
3. In-depth understanding of specialist bodies of knowledge within the engineering discipline.
4. Discernment of knowledge development and research directions within the engineering discipline.
5. Knowledge of engineering design practice and contextual factors impacting the engineering discipline.
6. Understanding of the scope, principles, norms, accountabilities and bounds of sustainable engineering practice in the specific discipline.
7. Application of established engineering methods to complex engineering problem solving.
8. Fluent application of engineering techniques, tools and resources.
10. Application of systematic approaches to the conduct and management of engineering projects.
11. Ethical conduct and professional accountability.
12. Effective oral and written communication in professional and lay domains.
13. Creative, innovative and pro-active demeanour.
14. Professional use and management of information.
15. Orderly management of self, and professional conduct.
16. Effective team membership and team leadership.

2.4. Graduate Attributes

This course will contribute to the development of the following Graduate Attributes:
- Appropriate technical knowledge
- Having advanced problem solving, analysis and synthesis skills with the ability to tolerate ambiguity
- Ability for engineering design and creativity
- Being able to think and work individually and in teams
• Having Health, Safety, Environment and Community (HSEC) consciousness.

3. REFERENCE RESOURCES

3.1. Reference Materials

Support material for this course including, whenever available, copies of lecture notes, recommended readings, assignments and results for assignments etc can be found on Moodle. All correspondence with students and any information regarding changes in the lecture schedule and assignment dates will be done through Moodle. All assignments must be submitted through Moodle. It is important that students regularly check Moodle for changes in calendar events and for messages.

• Gertsch, RE and Bullock, RL (eds.), 1998. Techniques in Underground Mining, SME, Littleton, USA.
• MEA Report Writing Guide

3.2. Software Tools

• Vulcan
• Whittle
• Deswick
• MS Excel
• TALPAC

3.3. Online Resources

Selected readings as well as other supporting material (e.g. course outline and lecture notes will be made available on LMS.
4.1. Learning Activities Summary

<table>
<thead>
<tr>
<th>Week</th>
<th>Dates</th>
<th>Activity</th>
<th>Hours</th>
<th>Tasks</th>
<th>Content</th>
</tr>
</thead>
</table>
| 1 | 3 March | Course Introduction | 4 | Introduction to course | Introduction of the project *(Myers Theatre)* 10.30 am to 11.30 am
ViMINE demonstration at the AVIE Theatre 11.30 am to 12.30 am (in groups) |
| 2 | 10 March | Project Work | 4 | Resource Model and Pit Optimisation @ OMB G48, 49
Pit optimisation and results analysis (ultimate pit limit, reserve estimation, pushback, and production schedule). |
| 3 | 17 March | Project Work | 4 | Pit Optimisation and software training (All day in groups)
@ OMB G48, 49
Pit optimisation and results analysis (ultimate pit limit, reserve estimation, pushback, and production schedule). |
| 3 | 24 March | Progress Interview 1 | 4 | Open Pit Design and software training (All day in groups)
@ OMB G48, 49
Vulcan Training (either 22nd and 24th March – in two groups All Day)
Underground Design |

28th March to 11th April - Easter Holiday and NTW Break

<table>
<thead>
<tr>
<th>Week</th>
<th>Dates</th>
<th>Activity</th>
<th>Hours</th>
<th>Tasks</th>
<th>Content</th>
</tr>
</thead>
</table>
| 5 | 14 April | Project Work | 4 | Progress Interview 1 (14th April) @ OMB G49
Underground Design and Layout | Progress Interview 1 - Whittle Results only
Underground mining strategy, mining method selection, stope sizing, reserve estimation. Selection of mine access and development of mining layout. |
| 6 | 21 April | Project Work | 4 | Geotechnical Considerations @ Myers Building | 10 am to 12 noon Myers Theatre (TBC): Guest Lecture on Underground
Geotechnical Design
Finalise your open pit and underground design
Production rates and production scheduling for underground mine.
10 am to 12 noon Myers Theatre (TBC): Guest Lecture on Underground Project Scheduling |
| 7 | 28 April | Project Work | 4 | Underground design and layout | 10 am to 12 noon Myers Theatre (TBC): Guest Lecture on Underground
Geotechnical Design
Finalise your open pit and underground design
Production rates and production scheduling for underground mine.
10 am to 12 noon Myers Theatre (TBC): Guest Lecture on Underground Project Scheduling |
| 8 | 5 May | Progress Interview 2 | 4 | Progress Interview 2 (5th May) @ OMB G49 | Progress Interview 2 – Vulcan Design for both open pit and underground
Open Pit and Underground Design |
| 9 | 12 May | Project Work | 4 | Equipment selection, Ventilation and geotechnical design @ OMB G48, 49
Equipment selection for both open pit and underground mine (Fleet size, capacity, type, etc.), Ventsim simulation, ground support design, etc.
10 am to 12 noon Myers Theatre (TBC): Guest Lecture on Project Evaluation in Mining Projects
Capital and operating costs, production costs, sensitivity analysis, NPV, etc. |
| 10 | 19 May | Project Work | 4 | Cost estimation and economic evaluation @ OMB G48, 49 | Risk analysis, environmental and social impacts, mine closure, etc.
Capital and operating costs, production costs, sensitivity analysis, NPV, etc. |
| 11 | 26 May | Project Work | 4 | Sustainable development @ OMB G48, 49 | Risk analysis, environmental and social impacts, mine closure, etc.
Capital and operating costs, production costs, sensitivity analysis, NPV, etc. |
| 12 | 2 June | Project Work | 4 | Presentation Days @ OMB G51 | Max 30-minute presentation by each group with more emphasis on the feasibility study.
2nd and/or 3rd June (All Day - TBC) – Presentations last Wednesday and/or Thursday (TBC) of the semester. |

Notes:
- The **Course Week** does not always align with the Semester Week.
- **Contact Hours per Week**: Four contact hours to be utilised for Project Based Learning.
- Contact times are scheduled for Thursday 10am – 2pm: Myers Theatre (Most of the class time will be done at the Computer Laboratories (OMB G48 and 49).
- The above schedule is a guide only and the indicated dates when each theme and course content is discussed and subject to change without notice.
- Additional guest lectures can be attended to the weekly activities.
- The Weeks mentioned above are planned according to the MEA week calendar.
5. COURSE ASSESSMENT

5.1. Assessment Summary

<table>
<thead>
<tr>
<th>Assessment</th>
<th>Due date</th>
<th>Weight (%)</th>
<th>Learning outcomes assessed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Progress Interview 1</td>
<td>14 April (Week 5)</td>
<td>10</td>
<td>1, 2, 4</td>
</tr>
<tr>
<td>Progress Interview 2</td>
<td>5 May (Week 8)</td>
<td>15</td>
<td>1, 2, 4</td>
</tr>
<tr>
<td>Final Presentation</td>
<td>2 June (Week 12)</td>
<td>25</td>
<td>1, 2, 3, 4</td>
</tr>
<tr>
<td>Final Report</td>
<td>6 June 9.00 AM</td>
<td>50</td>
<td>1, 2, 3, 4</td>
</tr>
</tbody>
</table>

- Only electronic copies (MS Word doc) will be evaluated.
- The Final Presentation date may change due to the availability of the Board Members in Week 12. This will be finalised 2 weeks prior to the date.

All the course materials and assignments will be available online through Moodle. Access to the Moodle site is via the Moodle icon on the MyUNSW homepage, or at https://moodle.telt.unsw.edu.au

5.2. Teaching & Learning Methods

Project-based learning

This course utilises project-based learning methods. Students will be given a comprehensive group projects to work on. Students are required to work in groups, share the project workload, and have weekly meetings and discussions.

Question/Answer sessions

Project work will be supported with weekly/bi-weekly Q/A sessions. All students are to attend these sessions.

Group work

Groups will be established by instructions from the course convenor. Each project will have a number of topics of emphasis. Each member of the group can elect to work on a topic of the project but all members must report their work to the group on weekly basis. A peer review will have to be submitted by each team, indicating the proportion of each individual group member's contribution to the project. Some marks will be taken from the underperforming students to others. If a student makes no contribution to the project, he/she will receive zero for that project. Further details of peer assessment process will be provided during the class and via Moodle.

Effective communication

One of the most effective means of learning is to effectively communicate what has been learned. Part of the assessment in this course will be determined by how effectively the results are communicated. The process of writing reports, brainstorming within a group, peer assessment, preparation and presentation of report, requires clarity of thinking, defending and revising a design and analysing the risks inherent in a project.
6. ASSESSMENT CRITERIA

The following assessment criteria provide a framework or guideline that will be used when assessing the various major assignments in the course. The student is advised to review this framework before undertaking an assignment. The criteria listed for each item of assessment and the descriptions contained therein are not intended to be prescriptive nor is it an exhaustive list. Rather it should be viewed as a framework to guide the student as to the type of information and depth of coverage that is expected to be evident in an assignment; the framework illustrates for example what would distinguish an excellent achievement from a poor achievement.

Hence the student should be cognisant that a range of factors are often being assessed in any one assignment; not just whether the final results are numerically correct or not. Consideration is given to other relevant elements that contribute to the Learning Outcomes of the course as well as the Graduate Attributes of the overall degree program.

The student is cautioned against merely using the assessment criteria as a checklist. When assessing an assignment, elements in the framework will be examined in terms of quality and creativity. Hence ensuring all elements are captured in an assignment is not sufficient and will not automatically lead to full marks being awarded. Other factors such as how the student went about presenting information, structuring an argument and/or supporting a particular recommendation or outcome are also important. Aside from being used as a guideline in preparing an assignment, the framework can also be used to provide feedback to a student on their performance in an assignment. Periodically the criteria are reviewed and updated; consequently, changes are made in order to improve their effectiveness in both of these tasks.

6.1. Progress Interview 1 and 2

As per the course requirement,
- All the members of the group must be present (0 mark will be awarded to any member of the team who is not present),
- Interview will be conducted in the lab where the students need to show the progress of the project on the computer,
- Students will be expected to demonstrate ability to use software for the purposes of the design,
- Students are required to give a one-page write-up on the workload distribution for the project till date
- This process will take about 10-15 minutes.

6.2. Final Project Presentation

Each group needs to provide the Course Convenor a copy of their Final Presentation before the start of the seminar in the morning. All students are required to attend and take part in the presentations for the whole seminar session. Absence from these presentations will only be allowed because of medical or extenuating circumstances. This will require documented evidence, e.g. Medical Certificate, etc. Final presentation will be 30 minutes long (including questions) and be worth 25% of the overall mark. The room is equipped with projection facilities and students may use PowerPoint if they wish. However, it is the individual’s responsibility to ensure that the presentation is functioning beforehand.

The criteria given below will be used for assessing the progress interviews, final presentation and the final report.
Progress Interview 1 Assessment Criteria (10%)

<table>
<thead>
<tr>
<th>Criteria</th>
<th>Excellent</th>
<th>Good</th>
<th>Satisfactory</th>
<th>Unsatisfactory</th>
<th>Poor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Content Quality</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(8%)</td>
<td>60</td>
<td>50</td>
<td>40</td>
<td>40</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>20</td>
<td>15</td>
<td>10</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Verbal Discussion</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>and Answers</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(4%)</td>
<td>40</td>
<td>36</td>
<td>35</td>
<td>28</td>
<td>27</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>19</td>
<td>10</td>
<td>9</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Progress Interview 2 Assessment Criteria (15%)

<table>
<thead>
<tr>
<th>Criteria</th>
<th>Excellent</th>
<th>Good</th>
<th>Satisfactory</th>
<th>Unsatisfactory</th>
<th>Poor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Open Pit Design</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(30%)</td>
<td>30</td>
<td>25</td>
<td>24</td>
<td>20</td>
<td>19</td>
</tr>
<tr>
<td></td>
<td>19</td>
<td>15</td>
<td>14</td>
<td>7</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Underground Design</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(40%)</td>
<td>40</td>
<td>34</td>
<td>33</td>
<td>27</td>
<td>26</td>
</tr>
<tr>
<td></td>
<td>26</td>
<td>20</td>
<td>19</td>
<td>12</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Verbal Discussion</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>and Answers</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(40%)</td>
<td>30</td>
<td>25</td>
<td>24</td>
<td>20</td>
<td>19</td>
</tr>
<tr>
<td></td>
<td>19</td>
<td>15</td>
<td>14</td>
<td>7</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Final Presentation Assessment Criteria (25%)

<table>
<thead>
<tr>
<th>Criteria</th>
<th>Mark</th>
<th>Excellent</th>
<th>Good</th>
<th>Satisfactory</th>
<th>Unsatisfactory</th>
<th>Poor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>10%</td>
<td>Provided a comprehensive overview of the presentation and objectives of the project. Some points not clearly presented.</td>
<td>Provided a good overview of the presentation and objectives of the project.</td>
<td>Provided a limited overview of the presentation and objectives of the project</td>
<td>Provided little or no overview of the presentation and limited or no objectives of the project.</td>
<td>Provided no background to presentation.</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>9</td>
<td>8</td>
<td>7</td>
<td>6</td>
<td>5</td>
</tr>
<tr>
<td>Content Quality</td>
<td>50%</td>
<td>Demonstrated comprehensive knowledge of resource estimation, mining strategy, mine design, layout and optimisation, mining Production Scheduling, Equipment Selection, Ventilation Design, Geotechnical Design. Ability to answer the questions correctly.</td>
<td>Demonstrated sound knowledge of resource estimation, mining strategy, mine design, layout and optimisation, mining Production Scheduling, Equipment Selection, Ventilation Design, Geotechnical Design. Ability to answer the questions correctly.</td>
<td>Demonstrated some knowledge of resource estimation, mining strategy, mine design, layout and optimisation, mining Production Scheduling, Equipment Selection, Ventilation Design, Geotechnical Design with minor errors. Adequate ability to answer the questions.</td>
<td>Demonstrated limited or no knowledge of resource estimation, mining strategy, mine design, layout and optimisation, mining Production Scheduling, Equipment Selection, Ventilation Design, Geotechnical Design with major errors. Some ability to answer the questions.</td>
<td>No ability to answer the questions.</td>
</tr>
<tr>
<td></td>
<td>50</td>
<td>45</td>
<td>44</td>
<td>43</td>
<td>34</td>
<td>25</td>
</tr>
<tr>
<td>Conclusion</td>
<td>10%</td>
<td>The analysis of the work conducted demonstrates good comprehension. Good conclusions, appropriate and valid responses to questions.</td>
<td>The analysis of the work conducted demonstrates good comprehension. Good conclusions, appropriate and valid responses to questions.</td>
<td>The analysis of the work conducted demonstrates some comprehension/Reasonable conclusions, appropriate and valid responses to questions.</td>
<td>The analysis of the work conducted demonstrates limited comprehension. Unreasonable conclusions, barely appropriate and valid responses to questions.</td>
<td>The analysis of the work conducted demonstrates no comprehension. Limited conclusions, barely appropriate and valid responses to questions.</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>9</td>
<td>8</td>
<td>7</td>
<td>6</td>
<td>5</td>
</tr>
<tr>
<td>Visual Aids Quality</td>
<td>10%</td>
<td>Clear presentation, presented with confidence and enthusiasm, well structured so that it flowed.</td>
<td>Clear presentation, slight lack of confidence, structure lightly erratic.</td>
<td>Reasonable presentation that ensured the audience was informed of the topic, some structure used.</td>
<td>Presentation difficult to follow due to erratic structure.</td>
<td>Poorly presented with little or no structure.</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>9</td>
<td>8</td>
<td>7</td>
<td>6</td>
<td>5</td>
</tr>
<tr>
<td>Verbal Presentation</td>
<td>25%</td>
<td>Provided a comprehensive well-written summary of the project parameters and outcomes.</td>
<td>Provided an acceptable summary of the project parameters and outcomes.</td>
<td>Provided a limited summary of the project parameters and outcomes.</td>
<td>Provided a limited or poorly written summary of the project parameters and outcomes.</td>
<td>Provided a poorly written summary of the project parameters and outcomes.</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>18</td>
<td>17</td>
<td>16</td>
<td>15</td>
<td>10</td>
</tr>
</tbody>
</table>

Final Report Assessment Criteria (50%)

<table>
<thead>
<tr>
<th>Criteria</th>
<th>Mark</th>
<th>Excellent</th>
<th>Good</th>
<th>Satisfactory</th>
<th>Unsatisfactory</th>
<th>Poor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Executive Summary</td>
<td>5%</td>
<td>Provided an executive summary of the mine planning and design aspects.</td>
<td>Provided an acceptable executive summary of the mine planning and design aspects.</td>
<td>Provided a limited executive summary of the mine planning and design aspects.</td>
<td>Provided a limited or poorly written executive summary of the mine planning and design aspects.</td>
<td>Provided a poorly written executive summary of the mine planning and design aspects.</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Mine Planning and Design</td>
<td>60%</td>
<td>Provided comprehensive cost estimates in terms of capital, operating and total production costs including an NPV estimate with a sensitivity analysis.</td>
<td>Provided comprehensive cost estimates in terms of capital, operating and total production costs including an NPV estimate with a sensitivity analysis.</td>
<td>Provided comprehensive cost estimates in terms of capital, operating and total production costs including an NPV estimate with a sensitivity analysis.</td>
<td>Provided comprehensive cost estimates in terms of capital, operating and total production costs including an NPV estimate with a sensitivity analysis.</td>
<td>Provided comprehensive cost estimates in terms of capital, operating and total production costs including an NPV estimate with a sensitivity analysis.</td>
</tr>
<tr>
<td></td>
<td>60</td>
<td>54</td>
<td>48</td>
<td>42</td>
<td>36</td>
<td>25</td>
</tr>
<tr>
<td>Project Evaluation</td>
<td>20%</td>
<td>The analysis of the work conducted highlights your comprehension and shows insight into the significance of the results. The report concludes with a clear concise summary of the outcomes and specific qualification.</td>
<td>The analysis of the work conducted highlights your comprehension and shows insight into the significance of the results. The report concludes with a clear concise summary of the outcomes and specific qualification.</td>
<td>The analysis of the work conducted demonstrates some comprehension. The report concludes with a summary of outcomes.</td>
<td>The analysis of the work conducted demonstrates limited comprehension. The report concludes with a poor summary of outcomes.</td>
<td>The analysis of the work conducted demonstrates no comprehension. The report concludes with a poor summary of outcomes.</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>18</td>
<td>17</td>
<td>15</td>
<td>13</td>
<td>10</td>
</tr>
<tr>
<td>Conclusions</td>
<td>5%</td>
<td>Provided a comprehensive financial analysis of the project parameters and outcomes.</td>
<td>Provided a limited or poorly written financial analysis of the project parameters and outcomes.</td>
<td>Provided a poorly written financial analysis of the project parameters and outcomes.</td>
<td>Provided a very limited or no financial analysis of the project parameters and outcomes.</td>
<td>Provided a very limited or no financial analysis of the project parameters and outcomes.</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Layout and Standard of Report</td>
<td>10%</td>
<td>Very good logical structure, physical layout and attention to detail. The work is presented in an accurate and coherent manner. Scientific and technical style. No new spelling mistakes or grammatical errors.</td>
<td>Acceptable structure and physical layout. Some inaccuracies or lack of detail in presentation/figure. Some minor spelling mistakes or grammatical errors.</td>
<td>Acceptable structure and physical layout. Some inaccuracies or lack of detail in presentation/figure. Some minor spelling mistakes or grammatical errors.</td>
<td>Acceptable structure and physical layout. Some inaccuracies or lack of detail in presentation/figure. Some minor spelling mistakes or grammatical errors.</td>
<td>Acceptable structure and physical layout. Some inaccuracies or lack of detail in presentation/figure. Some minor spelling mistakes or grammatical errors.</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>9</td>
<td>8</td>
<td>7</td>
<td>6</td>
<td>5</td>
</tr>
</tbody>
</table>

MINE 4250: Hardrock Mine Design and Feasibility Project-S1-2016
7. STUDYING A UG COURSE IN MINING ENGINEERING AT UNSW

7.1 How We Contact You

At times, the School or your lecturers may need to contact you about your course or your enrolment. Your lecturers will use the email function through Moodle or we will contact you on your @student.unsw.edu.au email address.

We understand that you may have an existing email account and would prefer for your UNSW emails to be redirected to your preferred account. Please see these instructions on how to redirect your UNSW emails: www.it.unsw.edu.au/students/zmail/redirect_external.html

7.2 How You Can Contact Us

We are always ready to assist you with your inquiries. To ensure your question is directed to the correct person, please use the email address below for:

Enrolment or other admin questions regarding your program: mining@unsw.edu.au

Course inquiries: these should be directed to the course convenor.

7.3 Computing Resources and Internet Access Requirements

UNSW Mining Engineering provides blended learning using the on-line Moodle LMS (Learning Management System).

It is essential that you have access to a PC or notebook computer. Mobile devices such as smart phones and tablets may compliment learning, but access to a PC or notebook computer is also required. Note that some specialist engineering software is not available for Mac computers.

You can access the School's computer laboratory in-line with the School laboratory access guidelines and Class bookings.

It is recommended that you have regular internet access to participate in forum discussion and group work. To run Moodle most effectively, you should have:

- broadband connection (256 Kbit/sec or faster)
- Chrome browser or FireFox
- ability to view streaming video (high or low definition UNSW The Box options)

More information about system requirements is available at www.student.unsw.edu.au/moodle-system-requirements.

7.4 Accessing Course Materials through Moodle

Course outlines and support materials are uploaded on a Learning Management System (LMS) - Moodle. All enrolled students are automatically included on the Moodle for each course. To access these documents, please visit: www.moodle.telt.unsw.edu.au

7.5 Assignment Submissions

The School has developed a guideline to help you when submitting a course assignment. Please take a closer look at all these details on our website: www.engineering.unsw.edu.au/mining-engineering/assignment-submission-policy

We encourage you to retain a copy of every assignment submitted for assessment for your own record either in hardcopy or electronic form. On a rare occasion, assignments may be mislaid and we may contact you to re-submit your assignment.
7.6 Late Submission of an Assignment

Full marks for an assignment are only possible when an assignment is received by the due date. In fairness to those students who do meet the assignment due date and time, deductions will apply to submissions made after this time. Details on deductions that are automatically applied to late submissions are available on our webpage: http://www.engineering.unsw.edu.au/mining-engineering/late-submissions

We understand that at times you may not be able to submit an assignment on time, and the School will accommodate any fair and reasonable extension. We would recommend you review the UNSW Special Consideration guidelines as soon as possible: https://student.unsw.edu.au/special-consideration

7.7 Unsatisfactory and/or Non-completion of course

A student who has not satisfactorily completed all the requirements of MINE4250 will not have met the prerequisite requirements and therefore will not be eligible to undertake MINE 4260.

7.8 Course Results

For details on UNSW assessment policy, please visit: https://student.unsw.edu.au/assessment

In some instances, your final course result may be withheld and not released on the UNSW planned date. This is indicated by a course grade result of either:

- WD – which usually indicates you have not completed one or more items of assessment or there is an issue with one or more assignment; or
- WC – which indicates you have applied for Special Consideration due to illness or misadventure and the course results have not been finalised.

In either event it would be your responsibility to contact the Course Convener as soon as practicable but no later than five (5) days after release of the course result. If you don’t contact the convener on time, you may be required to re-submit an assignment or re-sit the final exam and may result in you failing the course. You would also have a NC (course not completed) mark on your transcript and would need to re-enroll in the course.

7.9 Special Consideration

You can apply for special consideration through UNSW Student Central when illness or other circumstances interfere with your assessment performance. Sickness, misadventure or other circumstances beyond your control may:

- Prevent you from completing a course requirement,
- Keep you from attending an assessable activity,
- Stop you submitting assessable work for a course,
- Significantly affect your performance in assessable work, be it a formal end-of-semester examination, a class test, a laboratory test, a seminar presentation or any other form of assessment.

We ask that you please contact the Course Convener immediately once you have completed the special consideration application, no later than one week from submission.

More details on special consideration can be found at: https://www.student.unsw.edu.au/special-consideration

7.10 Students Needing Additional Support

The Student Equity and Disabilities Unit (SEADU) aims to provide all students with support and professional advice when circumstances may prevent students from achieving a successful university education. Take a look at their webpage: http://www.studentequity.unsw.edu.au/
7.11 Academic Honesty and Plagiarism

Your lecturer and the University will expect your submitted assignments are truly your own work. UNSW has very clear guidelines on what plagiarism is and how to avoid it. Plagiarism is using the words or ideas of others and presenting them as your own. Plagiarism is a type of intellectual theft. It can take many forms, from deliberate cheating to accidentally copying from a source without acknowledgement. The University has adopted an educative approach to plagiarism and has developed a range of resources to support students. All the details on plagiarism, including some useful resources, can be found at https://www.student.unsw.edu.au/plagiarism.

All Mining Engineering students are required to complete a student declaration for academic integrity which is outlined in the assignment cover sheets. By signing this declaration, you agree that your work is your own original work.

If you need some additional support with your writing skills, please contact the Learning Centre or view some of the resources on their website: http://www.lc.unsw.edu.au/. The Learning Centre is designed to help you improve your academic writing and communication skills. Some students use the Centre services because they are finding their assignments a challenge, others because they want to improve an already successful academic performance.

7.12 Report Writing Guide for Mining Engineers

7.13 Continual Course Improvement

At the end of each course, all students will have the opportunity to complete a course evaluation form. These anonymous surveys help us understand your views of the course, your lecturers and the course materials. We are continuously improving our courses based on student feedback, and your perspective is valuable.

We also encourage all students to share any feedback they have any time during the course – if you have a concern, please contact us immediately.