Undergraduate Course Outline

MINE3220
Resource Estimation
Session One, 2016

Dr Wendy Timms
E: w.timms@unsw.edu.au
CONTENTS

1. INFORMATION ABOUT THE COURSE ... 2

2. AIMS, LEARNING OUTCOMES AND GRADUATE ATTRIBUTES 3

3. REFERENCE RESOURCES .. 4

4. COURSE CONTENT AND LEARNING ACTIVITIES .. 6

5. COURSE ASSESSMENT .. 8

6. ASSESSMENT CRITERIA .. 9

7. STUDYING A UG COURSE IN MINING ENGINEERING AT UNSW 10

Document Management:
Filename: CourseOutline_TEMPLATE_S1_20160226_V1.2
Date last update: 26 Feb 2016
Changes made by: Wendy TIMMS
Revision number: V1.2
1. INFORMATION ABOUT THE COURSE

<table>
<thead>
<tr>
<th>Course Code:</th>
<th>MINE</th>
<th>Semester:</th>
<th>S1, 2016</th>
<th>Level:</th>
<th>UG</th>
<th>Units/Credits:</th>
<th>6 UOC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Course Name:</td>
<td>Resource Estimation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Course Convenor:</td>
<td>Dr Wendy Timms</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Contact Details</td>
<td>Faculty of Mining Engineering</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Old Main Building, Rm 162</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>EMAIL: w.timms@unsw.edu.au</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Phone: +61 2 9385 4511</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Contact times</td>
<td>Contact times are scheduled for:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Wednesday 2:00pm – 4:00pm, Myers Theatre</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Thursday 10:00am – 12:00pm, Old Main Building 230</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1.1. Course Description

This course covers the following topics:

- Data collection, compositing and resource model
- Principles of resource and reserve estimation
- Resource estimation techniques
- Orebody and Block modelling
- JORC Code
- Mine planning process
- Roles of feasibility studies
- Fundamental financial concepts for mining operations
- Mining business framework

1.2. Course Completion

Course completion requires:

- submission of **all assessment items**; failure to submit all assessment items will result in the award of an Unsatisfactory Failure (UF) grade for the Course.
- attendance at guest industry presentations
- participation in software training

1.3. Assumed Knowledge

This course assumes that a student:

- is currently enrolled in the Mining Engineering single degree program or a Mining Engineering double degree program at UNSW; and
- has satisfactorily completed all the courses in Stages 1 to 2 of the Mining Engineering single degree program or equivalent in the Mining Engineering double degree program and is in the Stage/Year of the program; and
- a basic knowledge of mining, geology and statistics.
2. AIMS, LEARNING OUTCOMES AND GRADUATE ATTRIBUTES

2.1. Course Aims

The aim of this course is to introduce students to the principles of resource and reserve estimation for metalliferous and coal deposits, as well as the fundamental concepts of mine planning process.

2.2. Learning Outcomes

Resource estimation is intended to enable students to:

- Appreciate the mine planning process and the impact of the economic environment on mining
- Appreciate the role of feasibility studies in mine planning
- Create coal and metalliferous resource models from exploration datasets using appropriate software tools and various estimation techniques
- Evaluate the merits and drawbacks of various estimation methods relevant to specific mineral deposit types
- Report resources and reserves using the JORC code
- Demonstrate an appreciation of the time value of money, discount rates, commodity markets, the required rate of return to equity
- Explain the unique characteristics of mining and their implications for mine economics

2.3. BE (Hons) Program Learning Outcomes

1. Comprehensive, theory based understanding of the underpinning natural and physical sciences and the engineering fundamentals applicable to the engineering discipline.
2. Conceptual understanding of the mathematics, numerical analysis, statistics, and computer and information sciences which underpin the engineering discipline.
3. In-depth understanding of specialist bodies of knowledge within the engineering discipline.
4. Discernment of knowledge development and research directions within the engineering discipline.
5. Knowledge of engineering design practice and contextual factors impacting the engineering discipline.
6. Understanding of the scope, principles, norms, accountabilities and bounds of sustainable engineering practice in the specific discipline.
7. Application of established engineering methods to complex engineering problem solving.
8. Fluent application of engineering techniques, tools and resources.
10. Application of systematic approaches to the conduct and management of engineering projects.
11. Ethical conduct and professional accountability.
12. Effective oral and written communication in professional and lay domains.
13. Creative, innovative and pro-active demeanour.
14. Professional use and management of information.
15. Orderly management of self, and professional conduct.
16. Effective team membership and team leadership.

2.4. Graduate Attributes

This course will contribute to the development of the following graduate attributes:

- Appropriate technical knowledge
- Having advanced problem solving, analysis and synthesis skills with the ability to cope with ambiguity and geological uncertainty
- Being able to think and work individually and in teams
• Awareness of opportunities to add value through engineering and the need for continuous improvement
• Being able to work and communicate effectively across discipline boundaries

3. REFERENCE RESOURCES

Support material for this course including, whenever available, course reader, lecture and tutorial materials, recommended readings, assignments and results for assignments etc can be found on Moodle. All correspondence with students and any information regarding changes in the lecture schedule and assignment dates will be done through Moodle. All assignments must be submitted through Moodle. It is important that students regularly check Moodle for changes in calendar events and for messages.

3.1. Recommended Texts

• SME Mining Engineers Handbook, 1992. USA
• Course reader (available on Moodle)
• Lecture slides and supporting readings (available on Moodle)

3.2. Reference Texts

• Reference texts are listed in the course reader at the end of each section.

3.3. Software Tools

• Surfer 8
• Microsoft Excel
• Geostatistics for Windows / Vulcan / Datamine

3.4. Reference Materials

Support material for this course including, whenever available, course reader, lecture and tutorial materials, recommended readings, assignments and results for assignments etc can be found on Moodle. All correspondence with students and any information regarding changes in the lecture schedule and assignment dates will be done through Moodle. All assignments must be submitted through Moodle. It is important that students regularly check Moodle for changes in calendar events and for messages.

• SME Mining Engineers Handbook, 1992. USA
• Course reader (available on Moodle)
• Lecture slides and supporting readings (available on Moodle)
• Reference texts are listed in the course reader at the end of each section.

3.5. Other Resources

• The Learning Centre. A number of resources are available at the UNSW Learning Centre website to assist students in preparing the various assessment tasks including:
3.6. Online Resources

Selected readings as well as other supporting material (e.g. course outline and lecture notes will be made available on LMS.

3.7. Software and Hardware

- Surfer 8
- Microsoft Excel
- Geostatistics for Windows / Vulcan / Datamine
4. COURSE CONTENT AND LEARNING ACTIVITIES

4.1. Learning Activities Summary

Please bring smartphone, tablet or notebook computer with wi-fi connection to all classes for random on-line quizzes (see assessment section for details).

Team A includes all students with a student number where final digit is odd. (eg. s3602363)

Team B includes all students with a student number where final digit is even or zero. (eg. s3602364)

Contact times and venue (unless indicated otherwise in Table following) are:
- **Wednesday 2:00pm – 4:00pm, Myers Theatre**
- **Thursday 10:00am – 12:00pm, Old Main Building 230**

<table>
<thead>
<tr>
<th>MEA WEEK</th>
<th>2016 DATE</th>
<th>Content</th>
<th>Activities</th>
<th>Presenter</th>
</tr>
</thead>
<tbody>
<tr>
<td>1A</td>
<td>2 March</td>
<td>Introduction, Data Collection and Sampling Theory,</td>
<td>• Course outline, learning outcomes and assessment,</td>
<td>WT & introducing key presenters</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Course content, weekly schedules,</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Data collection, Sampling theory Expectation, “rules”, teaching and learning strategy</td>
<td></td>
</tr>
<tr>
<td>1B</td>
<td>3 March</td>
<td>Data Compositing</td>
<td>• JORC overview</td>
<td>WT</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Review of the principles and practice of compositing drill hole analytical data.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Revision - coal quality</td>
<td></td>
</tr>
<tr>
<td>2A</td>
<td>9 March</td>
<td>Mine Planning Process</td>
<td>• Project criteria; Data gathering, data analysis, design; Equipment selection, scheduling; Valuation, Mine Plan; Mining method selection</td>
<td>SS</td>
</tr>
<tr>
<td>2B</td>
<td>10 March</td>
<td>JORC tutorial from industry perspective</td>
<td>@ Computer Lab (OMB48 and 49)</td>
<td>Guest industry presenter</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Attendance is compulsory to pass the course.</td>
<td></td>
</tr>
<tr>
<td>3A</td>
<td>16 March</td>
<td>Guest presentation - coal resource estimation</td>
<td>• Resource estimates and other technical inputs, resources and reserves at the feasibility study stage, the JORC code, resources and reserves during mining, grade control in practice.</td>
<td>Guest industry presenter</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Attendance is compulsory to pass the course.</td>
<td></td>
</tr>
<tr>
<td>3B</td>
<td>17 March</td>
<td>Surfer tutorial</td>
<td>@ Computer Lab (OMB48 and 49)</td>
<td>WT & teaching assistant</td>
</tr>
<tr>
<td>4A</td>
<td>23 March</td>
<td>Business Framework Role of Feasibility Studies</td>
<td>• Economic factors – interest, inflation, etc.</td>
<td>SS</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Commodity prices, supply demand</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Mineral marketing, value adding, concentrates Purpose of a feasibility study</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Types of feasibility studies</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Structure of a feasibility studies</td>
<td></td>
</tr>
<tr>
<td>4B</td>
<td>24 March</td>
<td>Quiz 1 (6%)</td>
<td>• Quiz 1 on Mine Planning, Process, Mining Business Framework, Role of Feasibility Studies, Data Collection, Sampling, Compositing, Coal Washability and JORC</td>
<td></td>
</tr>
<tr>
<td></td>
<td>25 March – 3 April</td>
<td>Mid semester break</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Date</td>
<td>Time</td>
<td>Event Description</td>
<td>Location</td>
<td>Instructor</td>
</tr>
<tr>
<td>--------</td>
<td>-------</td>
<td>--</td>
<td>--</td>
<td>-----------------------------</td>
</tr>
<tr>
<td>4-5 Apr</td>
<td>Team A: 4-5 April*</td>
<td>Software Training (Vulcan)</td>
<td>Vulcan Software Training - Orebody Modelling. @ Computer Lab (OMB48 and 49)</td>
<td>Teaching assistant + Maptek personnel</td>
</tr>
<tr>
<td></td>
<td>Team B: 6-7 April*</td>
<td>Orebody modelling, Global resource estimation,</td>
<td>2 days for each half of group, 9 am to 5 pm.</td>
<td>Attendance is required to pass the course.</td>
</tr>
<tr>
<td>13 Apr</td>
<td>5A</td>
<td>Orebody modelling, Global resource estimation,</td>
<td>Project 1 due at 9 am 11 April • Introduction to orebody modelling in the context of resource estimation • Geology of ore bodies • Grade tonnage curve Project 2 begins</td>
<td>WT</td>
</tr>
<tr>
<td>14 Apr</td>
<td>5B</td>
<td>Resource estimation techniques Geostatistical estimation</td>
<td>Traditional Resource Estimation Techniques (polygon, triangulation, IDS, etc.) • Geostatics</td>
<td>WT</td>
</tr>
<tr>
<td>20 Apr</td>
<td>6A</td>
<td>Vulcan modelling project time</td>
<td>@ Computer Lab (OMB48 and 49)</td>
<td></td>
</tr>
<tr>
<td>21 Apr</td>
<td>6B</td>
<td>Tutorial</td>
<td>Traditional estimation methods</td>
<td>WT</td>
</tr>
<tr>
<td>27 Apr</td>
<td>7A</td>
<td>Tutorial</td>
<td>Geostatistical estimation, kriging</td>
<td>WT</td>
</tr>
<tr>
<td>28 Apr</td>
<td>7B</td>
<td>Quiz 2 (7%)</td>
<td>Quiz 2 on Estimation Techniques, Geostatistics and Block Modelling</td>
<td></td>
</tr>
<tr>
<td>4 May</td>
<td>8A</td>
<td>Financial Concepts</td>
<td>Time value of money, net present value • Other decision analysis techniques • Undiscounted evaluation tools DCF techniques</td>
<td>SS</td>
</tr>
<tr>
<td>5 May</td>
<td>8B</td>
<td>Guest presentation - metals resource estimation</td>
<td>Attendance is compulsory to pass the course</td>
<td>Guest industry presenter Attendance is required to pass the course.</td>
</tr>
<tr>
<td>11 May</td>
<td>9A</td>
<td>Vulcan modelling project time</td>
<td>@ Computer Lab (OMB48 and 49)</td>
<td></td>
</tr>
<tr>
<td>12 May</td>
<td>9B</td>
<td>Project 2 report</td>
<td>9 AM to 2pm, 10 min for each group @ Computer Lab (OMB49)</td>
<td>Teaching assistant + Teaching assistant</td>
</tr>
<tr>
<td>18 May</td>
<td>10A</td>
<td>Cost Estimation</td>
<td>Capital and Operating Cost Estimation, Benchmarking</td>
<td>SS</td>
</tr>
<tr>
<td>19 May</td>
<td>10B</td>
<td>Tutorial</td>
<td>Financial concepts and project evaluations</td>
<td>Teaching assistant</td>
</tr>
<tr>
<td>25 May</td>
<td>11A</td>
<td>Mining Economics</td>
<td>Project 2 due @ 9 am Monday 23 May • Demand and supply Basic concepts of mine optimisation</td>
<td>SS</td>
</tr>
<tr>
<td>26 May</td>
<td>11B</td>
<td>Tutorial</td>
<td>Cost estimation</td>
<td>Teaching assistant</td>
</tr>
<tr>
<td>1 June</td>
<td>12A</td>
<td>Quiz 3 (7%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 June</td>
<td>12B</td>
<td>Course Review & Feedback</td>
<td>Course review</td>
<td>Teaching assistant + key presenters</td>
</tr>
</tbody>
</table>

WT is Dr Wendy Timms
SS is Associate Professor Serkan Saydam

Total student effort hours:

150 hours

(Note: The above indication of “student effort hours” is indicative only – It reflects the anticipated level of total student involvement with the course – either through accessing or participating in online materials and activities; private research; preparation of assignments. Individual students may find their level of involvement differs from this schedule.)
5. COURSE ASSESSMENT

5.1 Assessment Summary

Unless advised otherwise, all assignments must be submitted/ uploaded to Moodle no later than 9:00 AM Monday morning, for the date nominated.

Please bring smartphone, tablet or notebook computer with wi-fi connection to all classes for random on-line quizzes (see assessment section for details).

<table>
<thead>
<tr>
<th>Assessment</th>
<th>Start</th>
<th>Due</th>
<th>Weighting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Live on-line quizzes at end of lectures and tutorials. Best ~ 8 results of ~10 on-line quizzes will be counted to this assessment.</td>
<td>Random</td>
<td>Random</td>
<td>10%</td>
</tr>
<tr>
<td>Quiz 1 (written in class)</td>
<td>Week 4</td>
<td>Week 4</td>
<td>6%</td>
</tr>
<tr>
<td>Project 1 - group</td>
<td>Week 2</td>
<td>Week 5</td>
<td>15%</td>
</tr>
<tr>
<td>Quiz 2 (written in class)</td>
<td>Week 7</td>
<td>Week 7</td>
<td>7%</td>
</tr>
<tr>
<td>Project 2 - group</td>
<td>Week 5-6</td>
<td>Week 11</td>
<td>15%</td>
</tr>
<tr>
<td>Quiz 3 (written in class)</td>
<td>Week 12</td>
<td>Week 12</td>
<td>7%</td>
</tr>
<tr>
<td>Final Exam</td>
<td>Exam Period</td>
<td></td>
<td>40%</td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td></td>
<td>100%</td>
</tr>
</tbody>
</table>

All the course materials and assignments will be available online through Moodle. Access to the Moodle site is via the Moodle icon on the MyUNSW homepage, or at https://moodle.telt.unsw.edu.au

<table>
<thead>
<tr>
<th>Learning Outcomes</th>
<th>Assessment Methods</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Appreciate the mine planning process and the impact of the economic environment on mining</td>
<td>• Random on-line quizzes at end of lectures and tutorials</td>
</tr>
<tr>
<td>• Appreciate the role of feasibility studies in mine planning</td>
<td>• Quiz 1 (written in-class)</td>
</tr>
<tr>
<td>• Create coal and metalliferous resource models from exploration datasets using appropriate software tools and various estimation techniques</td>
<td>• Final exam</td>
</tr>
<tr>
<td>• Appreciate the merits and drawbacks of various estimation methods relevant to specific mineral deposit types.</td>
<td>• Random on-line quizzes at end of lectures and tutorials</td>
</tr>
<tr>
<td>• Report resources and reserves using the JORC code.</td>
<td>• Assignment</td>
</tr>
<tr>
<td>• Demonstrate an appreciation of the time value of money, discount rates, commodity markets, the required rate of return to equity</td>
<td>• Individual & Group project</td>
</tr>
<tr>
<td>• Explain the unique characteristics of mining and their implications for mine economics</td>
<td>• Final exam</td>
</tr>
</tbody>
</table>

5.2 Teaching & Learning Methods

Lectures and tutorials: This course combines active learning activities with traditional lecture-based teaching.

6. ASSESSMENT CRITERIA

The assessment criteria provide a framework for students when preparing major assignments in the course as well as a guideline for assessors when marking an assignment. The student is advised to review the relevant framework before undertaking their assignment.

The criteria listed for each item of assessment and the descriptions contained therein are not intended to be prescriptive nor is it an exhaustive list. Rather it should be viewed as a framework to guide the student as to the type of information and depth of coverage that is expected to be evident in a submission for assessment; the framework illustrates for example what would distinguish an excellent achievement from a poor achievement.

The student should be cognisant that a range of factors is often being assessed in any one assignment; not just whether the final results are numerically correct. Consideration is given to other relevant elements that contribute to the Learning Outcomes of the course as well as the Graduate Attributes of the overall degree program.

The student is cautioned against merely using the assessment criteria as a checklist. When assessing an assignment, elements in the framework will be examined in terms of quality and creativity. Hence ensuring all the listed elements are merely covered in an assignment is often not sufficient in itself and will not automatically lead to full marks being awarded. Other factors such as how the student went about presenting information, how an argument was structured and/or the elements supporting a particular recommendation or outcome are also important.

Finally the framework can also be used to provide feedback to a student on their performance in an assignment. Periodically the criteria are reviewed and updated; consequently changes may be made from time to time to the framework to improve its effectiveness in achieving both these objectives.

Note: Reference to RWG in the assessment criteria refers to the MEA Report Writing Guide, and GTA to the AusIMM Guide to Authors.
7. STUDYING A UG COURSE IN MINING ENGINEERING AT UNSW (Alter as required)

7.1. How We Contact You

At times, the School or your lecturers may need to contact you about your course or your enrolment. Your lecturers will use the email function through Moodle or we will contact you on your @student.unsw.edu.au email address.

We understand that you may have an existing email account and would prefer for your UNSW emails to be redirected to your preferred account. Please see these instructions on how to redirect your UNSW emails: www.it.unsw.edu.au/students/zmail/redirect_external.html

7.2. How You Can Contact Us

We are always ready to assist you with your inquiries. To ensure your question is directed to the correct person, please use the email address below for:

Enrolment or other admin questions regarding your program: mining@unsw.edu.au
Course inquiries: these should be directed to the course convenor.

7.3. Computing Resources and Internet Access Requirements

UNSW Mining Engineering provides blended learning using the on-line Moodle LMS (Learning Management System).

It is essential that you have access to a PC or notebook computer. Mobile devices such as smart phones and tablets may compliment learning, but access to a PC or notebook computer is also required. Note that some specialist engineering software is not available for Mac computers.

You can access the School’s computer laboratory in-line with the School laboratory access guidelines and Class bookings.

It is recommended that you have regular internet access to participate in forum discussion and group work. To run Moodle most effectively, you should have:

- broadband connection (256 Kbit/sec or faster)
- Chrome browser or FireFox
- ability to view streaming video (high or low definition UNSW The Box options)

More information about system requirements is available at www.student.unsw.edu.au/moodle-system-requirements.

7.4. Accessing Course Materials through Moodle

Course outlines and support materials are uploaded on a Learning Management System (LMS) - Moodle. All enrolled students are automatically included on the Moodle for each course. To access these documents, please visit: www.moodle.telt.unsw.edu.au

7.5. Assignment Submissions

The School has developed a guideline to help you when submitting a course assignment. Please take a closer look at all these details on our website: www.engineering.unsw.edu.au/mining-engineering/assignment-submission-policy

We encourage you to retain a copy of every assignment submitted for assessment for your own record either in hardcopy or electronic form. On a rare occasion, assignments may be mislaid and we
7.6. Late Submission of an Assignment

Full marks for an assignment are only possible when an assignment is received by the due date. In fairness to those students who do meet the assignment due date and time, deductions will apply to submissions made after this time. Details on deductions that are automatically applied to late submissions are available on our webpage: http://www.engineering.unsw.edu.au/mining-engineering/late-submissions

We understand that at times you may not be able to submit an assignment on time, and the School will accommodate any fair and reasonable extension. We would recommend you review the UNSW Special Consideration guidelines as soon as possible: https://student.unsw.edu.au/special-consideration

7.7. Course Results

For details on UNSW assessment policy, please visit: https://student.unsw.edu.au/assessment

In some instances your final course result may be withheld and not released on the UNSW planned date. This is indicated by a course grade result of either:

- WD – which usually indicates you have not completed one or more items of assessment or there is an issue with one or more assignment; or
- WC – which indicates you have applied for Special Consideration due to illness or misadventure and the course results have not been finalised.

In either event it would be your responsibility to contact the Course Convener as soon as practicable but no later than five (5) days after release of the course result. If you don’t contact the convener on time, you may be required to re-submit an assignment or re-sit the final exam and may result in you failing the course. You would also have a NC (course not completed) mark on your transcript and would need to re-enroll in the course.

7.8. Special Consideration

You can apply for special consideration through UNSW Student Central when illness or other circumstances interfere with your assessment performance. Sickness, misadventure or other circumstances beyond your control may:

- Prevent you from completing a course requirement,
- Keep you from attending an assessable activity,
- Stop you submitting assessable work for a course,
- Significantly affect your performance in assessable work, be it a formal end-of-semester examination, a class test, a laboratory test, a seminar presentation or any other form of assessment.

We ask that you please contact the Course Convener immediately once you have completed the special consideration application, no later than one week from submission.

More details on special consideration can be found at: https://www.student.unsw.edu.au/special-consideration

7.9. Students Needing Additional Support

The Student Equity and Disabilities Unit (SEADU) aims to provide all students with support and professional advice when circumstances may prevent students from achieving a successful university education. Take a look at their webpage: http://www.studentequity.unsw.edu.au/
7.10. Academic Honesty and Plagiarism

Your lecturer and the University will expect your submitted assignments are truly your own work. UNSW has very clear guidelines on what plagiarism is and how to avoid it. Plagiarism is using the words or ideas of others and presenting them as your own. Plagiarism is a type of intellectual theft. It can take many forms, from deliberate cheating to accidentally copying from a source without acknowledgement. The University has adopted an educative approach to plagiarism and has developed a range of resources to support students. All the details on plagiarism, including some useful resources, can be found at https://www.student.unsw.edu.au/plagiarism.

All Mining Engineering students are required to complete a student declaration for academic integrity which is outlined in the assignment cover sheets. By signing this declaration, you agree that your work is your own original work.

If you need some additional support with your writing skills, please contact the Learning Centre or view some of the resources on their website: http://www.lc.unsw.edu.au/. The Learning Centre is designed to help you improve your academic writing and communication skills. Some students use the Centre services because they are finding their assignments a challenge, others because they want to improve an already successful academic performance.

7.11. Report Writing Guide for Mining Engineers

7.12. Continual Course Improvement

At the end of each course, all students will have the opportunity to complete a course evaluation form. These anonymous surveys help us understand your views of the course, your lecturers and the course materials. We are continuously improving our courses based on student feedback, and your perspective is valuable.

We also encourage all students to share any feedback they have any time during the course – if you have a concern, please contact us immediately.