MINE4310
Mine Geotechnical Engineering
Session One, 2016

Professor Fidelis Suorineni
E: f.suorineni@unsw.edu.au
1. INFORMATION ABOUT THE COURSE

<table>
<thead>
<tr>
<th>Course Code:</th>
<th>MINE4310</th>
<th>Semester:</th>
<th>S1, 2016</th>
<th>Level: UG</th>
<th>Units/Credits: 6 UOC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Course Name:</td>
<td>Mine Geotechnical Engineering</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Course Convenor: **Professor Fidelis T Suorineni**

Contact Details:
- School of Mining Engineering
- Old Main Building, Rm 160G
- EMAIL: f.suorineni@unsw.edu.au
- Phone: +61 2 9385 5169

Contact times are scheduled for:
- Monday 10:00am – 12:00pm, QUAD 1027
- Wednesday 3:00pm – 5:00pm, RedC M032

1.1. Course Description

This course provides students with a practical understanding of the application of geotechnical engineering principles in mining – from the perspective of planning, design and operations. There are 16 topics under the course content covering both soft and hard rock, as well as underground and open-cut mining systems.

1.2. Course Completion

Course completion requires:
- submission of all assessment items; failure to submit all assessment items will result in the award of an Unsatisfactory Failure (UF) grade for the Course.

1.3. Assumed Knowledge

This course assumes that a student has a good understanding of mining terms and descriptions, have been exposed to surface and underground mining methods and are familiar with mining development, operations and production. In particular students would have taken MINE3310 Mine Geomechanics or equivalent.

1.4. Course Content

- Mining methods selection – geotechnical criteria and core geotechnical risks
 - Geotech criteria for methods (Brady/Brown chart)
 - Core geotech risks
 - Northparkes case study Mine development
- Geotechnical exploration, data collection and analysis
 - Prefeasibility studies
 - Geophysical (regional and down hole) methods
 - Spatial distribution of discontinuities
 - Ground water studies - geotechnical implications
 - Integration of lab and field data
 - Regional stress distribution
 - Geotechnical domains
 - Basic statistics with limited data/uncertainty
- Ground Reaction Curve (GRC)
- Rock mass classification systems – practical applications
 - Open cut
 - Underground coal
 - Underground hard rock (Development/stopes/caveability)
- Excavation stability and spans –applications to soft and hard rock
 - Shape and size
 - Empirical methods (e.g Matthews)
• Elastic and elasto-plastic yielding
• Stand-up time

- Rock support
 - Mechanics of reinforcement and support systems
 - Support elements and structures
 - Rock mass-support interactions
 - Support design systems
 - Ground control strategies (e.g. stiff versus soft; dynamic response; etc)

- Mine fill design and applications
 - Required soil mechanics knowledge and terminology
 - Fill types (paste, rockfill, classified fill, sand and slurry/hydraulic) and composition
 - Fill functions and properties
 - Applicable mining methods and designs
 - Fill transport, distribution and placement
 - Fill barricades

- Pillar mechanics and design
 - Pillar mechanics
 - Panel layout and regional stability
 - Different pillar types and functions
 - Design methodologies (empirical and numerical)
 - Pillar extraction
 - Hard rock room and pillar applications

- Longwall geomechanics
 - Longwall face design/stability
 - Support performance
 - Longwall caving
 - Periodic weighting

- Caving geomechanics – hard rocks
 - Laubscher rules
 - Caveability and cave propagation
 - Arching and key block theory
 - Fragmentation
 - Pre-conditioning
 - Undercutting and extraction level design
 - Flow
 - Monitoring
 - Emerging technologies

- Subsidence
 - Mechanics of subsidence behaviour
 - Prediction methodologies
 - Mitigation and control strategies
 - Environmental impact

- Dynamic events; Seismicity and rockbursts, Airblasts and gas outbursts
 - Mechanisms
 - Prevailing ground conditions
 - Prediction techniques
 - Mitigation and control strategies

- Slope stability
 - Factors affecting slope stability
 - Failure mechanisms and factor of safety
 - Slope analysis and design (deterministic and probabilistic)
 - Mitigation and control strategies
 - Time to failure prediction

- Instrumentation and monitoring
 - Purposes of monitoring
 - Instrumentation systems and equipment
 - Design of monitoring systems
• Interpretation of monitoring data
 ▪ Application of numerical methods to mine design
 • Numerical methods
 • Problem definition
 • Selection of appropriate methods relative to mining problems
 • Input data requirements
 • Interpretation of modelling results
 • Validation and limitations of modelling results
 • Case studies

 ▪ Hazard assessment / ground control management, risk control
 • Identification of geotechnical hazards
 • Geotechnical risk assessment and mitigation/control strategies
 • Ground control management plans (incl. legislative requirements)
2. AIMS, LEARNING OUTCOMES AND GRADUATE ATTRIBUTES

2.1. Course Aims

This course provides students with a practical understanding of the application of geotechnical engineering principles in mining from the perspective of planning, design, and operations.

2.2. Learning Outcomes

At the conclusion of this course, students should be able to:

1. recognise the major geotechnical applications and their significance within the mainstream mining systems and conditions (refer to elements 7, 8, 9, 10 of BE (Hons) Program below)
2. have a sound working knowledge of fundamental mechanisms and geotechnical principles within the context of practical mining applications; (1, 2, 5, 7)
3. recognise the role and importance of these principles in a comprehensive range of mining applications, both from a technical perspective, and from the risk and operational management perspective. (6; 8)

2.3. BE (Hons) Program Learning Outcomes

1. Comprehensive, theory based understanding of the underpinning natural and physical sciences and the engineering fundamentals applicable to the engineering discipline.
2. Conceptual understanding of the mathematics, numerical analysis, statistics, and computer and information sciences which underpin the engineering discipline.
3. In-depth understanding of specialist bodies of knowledge within the engineering discipline.
4. Discernment of knowledge development and research directions within the engineering discipline.
5. Knowledge of engineering design practice and contextual factors impacting the engineering discipline.
6. Understanding of the scope, principles, norms, accountabilities and bounds of sustainable engineering practice in the specific discipline.
7. Application of established engineering methods to complex engineering problem solving.
8. Fluent application of engineering techniques, tools and resources.
10. Application of systematic approaches to the conduct and management of engineering projects.
11. Ethical conduct and professional accountability.
12. Effective oral and written communication in professional and lay domains.
13. Creative, innovative and pro-active demeanour.
14. Professional use and management of information.
15. Orderly management of self, and professional conduct.
16. Effective team membership and team leadership.

2.4. Graduate Attributes

This course will contribute to the development of the following Graduate Attributes:

1. appropriate technical knowledge
2. having advanced problem solving, analysis and synthesis skills with the ability to tolerate ambiguity
3. ability for engineering design and creativity
4. awareness of opportunities to add value through engineering and the need for continuous improvement
5. being able to work and communicate effectively across discipline boundaries
6. having HSEC consciousness
7. being active life-long learners.
3. REFERENCE RESOURCES

3.1. Reference Materials

- Deep and high stress mining, *1st Int'l Seminar, ACG, Perth, 2002*

3.2. Online Resources

Selected readings as well as other supporting material (e.g. course outline and lecture notes will be made available on Moodle, the Learning & Teaching Management System (LTMS) accessed on-line at http://elearning.mea.edu.au/)

3.3. Software and Hardware

- Phase2
- DIPS
- RocLab / RocData
4. COURSE CONTENT AND LEARNING ACTIVITIES

4.1. Learning Activities Summary

<table>
<thead>
<tr>
<th>Week</th>
<th>Date</th>
<th>Activity</th>
<th>Hours</th>
<th>Topic</th>
<th>Content</th>
<th>Presenter</th>
</tr>
</thead>
</table>
| 1 | 29/02 | Lecture | 2 | Geotechnical exploration, data collection and analysis | • Course introduction
• Brief review of laboratory tests and data analysis
• Geotechnical Domains
• In situ stresses (applications and issues)
• Data integration
• Uses and limitation of statistics in geomechanics | Prof Fidelis Suorineni |
| | 02/03 | Lecture | 2 | Mining methods selection criteria and geotechnical risks | • Geotech criteria for methods (Brady/Brown chart)
• Core geotech risks
• Northparkes case study
• Identification of geotechnical hazards
• Geotechnical risk assessment and mitigation/control strategies
• Ground control management plans (incl. legislative requirements) | Prof Bruce Hebblewhite |
| 2 | 07/03 | Lecture | 2 | Elastic and Elasto-plastic yielding (Modelling implications) | • Elastic failure
• Elasto-plastic yielding
• Elastic-brittle-plastic yielding | Demonstrator (Kimie Suzuki) |
| | 09/03 | Lecture | 2 | Excavation stability and spans | • Shape and size
• Empirical methods (e.g Matthews)
• Elastic and elasto-plastic yielding
• Stand-up time | Prof Fidelis Suorineni |
| 3 | 14/03 | Lecture | 1 | Rockmass classification systems – Hard rock | • Underground hard rock including use in caveability prediction | Prof Fidelis Suorineni |
| | | Tutorial | 1 | GRC and Rockmass Classifications | • Analysis of tunnel behaviour
• Deformation of an unsupported tunnel
• Deformation characteristics of support | Prof Fidelis Suorineni |
| | 16/03 | Lecture | 2 | Rockmass classification systems – Open pit and soft rock | • Open pit design (SMR)
• Underground coal mining applications (CMRR etc) | Prof Ismet Canbulat |
| 4 | 21/03 | Lecture | 2 | Rock reinforcement and support – Soft rock | • Mechanics of reinforcement and support systems (Mechanics)
• Support elements and structures
• Ground control strategies (e.g. stiff versus soft; dynamic response; etc)
• Emerging technologies | Prof Ismet Canbulat |
| | 23/03 | Lecture | 2 | Rock reinforcement and support – Hard rock | • Mechanics of reinforcement and support systems
• Support elements and structures
• Support design systems
• Ground control strategies (e.g. stiff versus soft; dynamic response; etc)
• Support for burst-prone ground
• Emerging technologies | Prof Fidelis Suorineni |
| 5 | 28/03 - 10/04 | Mid-Term Break and Non-Teaching Week | | | | |
| 6 | 11/04 | Tutorial (compu ter Lab) | 2 | Ground Reaction Curve (GRC) | • Analysis of tunnel behaviour
• Deformation of an unsupported tunnel
• Deformation characteristics of support | Demonstrator (Kimie Suzuki) |
| | 13/04 | Lecture | 2 | Mire fill design and applications | • Required soil mechanics knowledge and terminology
• Fill types (Paste, rockfill, classified fill, sand and slurry/hydraulic) and composition
• Fill functions and properties
• Applicable mining methods and designs
• Fill transport, distribution and placement
• Fill barricades | Prof Fidelis Suorineni |
| | 18/04 | Lecture | 2 | Instrumentation and monitoring (surface and underground) | • Purposes of monitoring
• Instrumentation systems and equipment
• Design of monitoring systems
• Interpretation of monitoring data | Prof Ismet Canbulat |
<table>
<thead>
<tr>
<th>Date</th>
<th>Activity</th>
<th>Topic</th>
<th>Details</th>
<th>Lecturer</th>
</tr>
</thead>
</table>
| 20/04 | Lecture 2 | Coal pillar mechanics and extraction | • Pillar mechanics
• Pillar extraction
• Pillar types and functions | Prof Bruce Hebblewhite |
| 25/04 | Lecture 1 | Hard rock pillar design | • Supplementary material: Continuation from 20/04 | Prof Fidelis Suorineni |
| | Tutorial 1 | Pillar Design | Sample questions using failure criteria, rock mass classifications | Demonstrator (Kimie Suzuki) |
| 27/04 | Lecture 2 | Caving mechanics – hard rock | • Laubscher rules
• Caveability and cave propagation
• Arching and key block theory
• Fragmentation
• Pre-conditioning
• Undercutting and extraction level design
• Flow
• Monitoring
• Emerging technologies | Prof Fidelis Suorineni |
| 02/05 | Lecture 2 | Caving methods | • Caving continued | Eric Strom – Northparkes Mines (Guest Lecture) |
| 04/05 | Lecture 2 | Subsidence | • Mechanics of subsidence behaviour
• Prediction methodologies
• Mitigation and control strategies
• Environmental impact | Prof Bruce Hebblewhite |
| 09/05 | Lecture 2 | Dynamic events: seismicity, rock bursts Hard Rock | • Definitions
• Mechanisms
• Prevailing ground conditions
• Prediction techniques | Prof Fidelis Suorineni |
| 11/05 | Lecture 2 | Dynamic events: seismicity, rock bursts in hard rock | Mitigation measures
• Passive
• Active
• The future | Prof Fidelis Suorineni |
| 16/05 | Lecture 2 | Dynamic problems in coal mining | • Gas outbursts
• Coal bumps
• Coal bursts
• Wind/Airblasts (including in hard rock caving) | Prof Ismet Canbulat |
| 18/05 | Lecture 2 | Slope stability | • Factors affecting slope stability
• Failure mechanisms and factor of safety
• Slope analysis and design (deterministic and probabilistic)
• Mitigation and control strategies
• Time to failure prediction | Prof Fidelis Suorineni |
| 23/05 | Lecture 1 | Slope stability | Continued from 18/05 | Prof Fidelis Suorineni |
| | Tutorial 1 | Slope stability | Sample Backfill questions | Demonstrator (Kimie Suzuki) |
| 25/05 | Lecture 2 | Application of numerical methods to mine design | • Numerical methods
• Problem definition
• Selection of appropriate methods relative to mining problems
• Input data requirements
• Interpretation of modelling results
• Validation and limitations of modelling results
• Case studies | Dr David Beck (Guest lecture) |
| 30/05 | Lecture 2 | Longwall geomechanics | • Longwall face design/stability
• Support performance
• Longwall face design/stability
• Support performance
• Longwall caving
• Periodic weighting
• Panel layout and regional stability | Prof Ismet Canbulat |
Total student effort hours:
Approx. 45 hours/week
(Note: The above indication of “student effort hours” is indicative only – It reflects the anticipated level of total student involvement with the course – either through accessing or participating in online materials and activities; private research; preparation of assignments. Individual students may find their level of involvement differs from this schedule.

5. COURSE ASSESSMENT

5.1. Assessment Summary

All assessments are due 12 noon Sydney time on Monday of the week, unless otherwise indicated in the table below.

<table>
<thead>
<tr>
<th>Assessment</th>
<th>Start</th>
<th>Due</th>
<th>Weighting</th>
<th>Method of Assessment</th>
<th>Learning outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assignment A</td>
<td>Week 2 March 9</td>
<td>Week 5 April 11th</td>
<td>15%</td>
<td>Numerical Modelling (stopes) (Individual)</td>
<td>1, 2</td>
</tr>
<tr>
<td>Assignment B</td>
<td>Week 8 April 18th</td>
<td>Week 10 May 2nd</td>
<td>15%</td>
<td>Monitoring and seismicity (Individual)</td>
<td>3</td>
</tr>
<tr>
<td>Assignment C</td>
<td>Week 10 May 4th</td>
<td>Wk 13 May 23rd</td>
<td>15%</td>
<td>Subsidence (Individual)</td>
<td>3</td>
</tr>
<tr>
<td>Formative Quiz</td>
<td>Continuous</td>
<td>Must complete all</td>
<td>5%</td>
<td>All topics</td>
<td>1, 2, 3</td>
</tr>
<tr>
<td>Final Exam</td>
<td>June 21, 2015</td>
<td></td>
<td>50%</td>
<td>5 Questions – Answer all</td>
<td>1, 2, 3</td>
</tr>
</tbody>
</table>

All the course materials and assignments will be available online through Moodle. Access to the Moodle site is via the Moodle icon on the MyUNSW homepage, or at https://moodle.telt.unsw.edu.au

Please bring smartphone, tablet or notebook computer with wi-fi connection to all classes for random on-line quizzes (see assessment section for details).

5.2. Assessment Requirements

When

- If not otherwise stated, the default deadline for submission of an assignment is 9:00am on Monday in the nominated week. If the Monday coincides with a Public Holiday then the due date is the next business day in the nominated week.
- Early submission is required in cases where the student will otherwise be absent on the due date of submission, for example to attend the Student Mining Games, a graduate employment interview etc. – no extensions will be granted.
- Prior to submission, students should read the School Policy on Assignment Submissions which can be viewed at: <www.mining.unsw.edu.au/information-about/our-school/policies-procedures-guidelines>.
- In particular, the student should make sure they have read and understood the:
 - Declaration of Academic Integrity;
• Assignment Submission requirements detailed in the University Policies section of the Course Outline; and
• School Policy on Assignment Submission available on the School's website (the web address is given in the Course Outline). In particular note the requirement that only PDF documents should be uploaded and the required file naming convention.

Where
• Submissions must be made electronically through Turnitin in the LTMS unless otherwise stated. Turnitin is a plagiarism checking service that will retain a copy of the assessment item on its database for the purpose of future plagiarism checking.

What
• Submission requirements for all assignments are listed in Sections 4 and 7 of the Course Learning Guide.
• The submission must be:
 o a single document in PDF format; and
 o prepared in the form of a formal report that includes a list of reference sources cited in the report, prepared in accordance with the report writing standards of the School as contained in the MEA Report Writing Guide for Mining Engineers. A copy can be obtained from the UNSW Bookshop or downloaded from the School webpage.
• Each submission must have appended:
 o to the front, a signed copy of the Student Declaration Form and Coversheet; and
 o to the end, a completed self-assessed copy of the Assessment Criteria.
Copies of both documents are available for download from LTMS.
• It is strongly recommended when preparing the major assignment; students use the Report Template available from LTMS. Note: as this template already incorporates the required Student Declaration Form, a student does not need to separately append a signed copy of coversheet to their assignment.

How
• The submitted document must be consistent with the following file naming convention: < FamilyNameInitials_MINE4310_AssignmentNumber.pdf >.
• A typical complaint filename would take the following form < SmithPD_MINE4310_A01.pdf > which elements correspond to:
 o Family name of student: Smith
 o Initial(s) of student: PD
 o Course Code: MINE4310
 o Assignment number: A01...as defined in the Course Outline for the assessment task
 o File format: PDF document

5.3. Penalties for Non-Compliant Submission

A submission that is non-compliant with the School Policy on Assignment Submission and/or requirements as contained in this Course Outline may not be marked and/or penalty marks subtracted from the assignment mark for non-compliance.

Some examples of a non-compliant assignment include that the assignment submission:
• is not a single PDF document. Penalty for non-compliance: assignment not marked.
• does not contain a signed copy of the Student Declaration Statement. Penalty for non-compliance: assignment not marked.
• is not fully consistent with the designated file naming convention as listed above and defined in the School Policy on electronic submission. For example, a file name such as < Assignment A.pdf > is NOT compliant. Penalty for non-compliance: 10 marks.
5.4. Assignment Attachments

Each assignment submitted for assessment must be attached with:

- an official School Coversheet at the front of the assignment; and

If this is not attached then the assignment will be deemed non-compliant with the assessment requirements. A non-compliant submission may not be marked and zero marks may be awarded for that assessment item.

Note: Do NOT submit any assessment item directly to your course convener as a late submission penalty will be applied.
Assessment criteria will be provided at the end of each assignment task to provide a framework for students when preparing major assignments in the course as well as a guideline for assessors when marking an assignment. The student is advised to review the relevant framework before undertaking their assignment.

The criteria listed for each item of assessment and the descriptions contained therein are not intended to be prescriptive nor is it an exhaustive list. Rather it should be viewed as a framework to guide the student as to the type of information and depth of coverage that is expected to be evident in a submission for assessment; the framework illustrates for example what would distinguish an excellent achievement from a poor achievement.

The student should be cognisant that a range of factors is often being assessed in any one assignment; not just whether the final results are numerically correct. Consideration is given to other relevant elements that contribute to the **Learning Outcomes** of the course as well as the **Graduate Attributes** of the overall degree program.

The student is cautioned against merely using the assessment criteria as a checklist. When assessing an assignment, elements in the framework will be examined in terms of quality and creativity. Hence ensuring all the listed elements are merely covered in an assignment is often not sufficient in itself and will not automatically lead to full marks being awarded. Other factors such as how the student went about presenting information, how an argument was structured and/or the elements supporting a particular recommendation or outcome are also important.
7. STUDYING A UG COURSE IN MINING ENGINEERING AT UNSW

7.1. How We Contact You

At times, the School or your lecturers may need to contact you about your course or your enrolment. Your lecturers will use the email function through Moodle or we will contact you on your @student.unsw.edu.au email address.

We understand that you may have an existing email account and would prefer for your UNSW emails to be redirected to your preferred account. Please see these instructions on how to redirect your UNSW emails: www.it.unsw.edu.au/students/zmail/redirect_external.html

7.2. How You Can Contact Us

We are always ready to assist you with your inquiries. To ensure your question is directed to the correct person, please use the email address below for:

Enrolment or other admin questions regarding your program: mining@unsw.edu.au
Course inquiries: these should be directed to the course convenor.

7.3. Computing Resources and Internet Access Requirements

UNSW Mining Engineering provides blended learning using the on-line Moodle LMS (Learning Management System).

It is essential that you have access to a PC or notebook computer. Mobile devices such as smart phones and tablets may compliment learning, but access to a PC or notebook computer is also required. Note that some specialist engineering software is not available for Mac computers.

You can access the School’s computer laboratory in-line with the School laboratory access guidelines and Class bookings.

It is recommended that you have regular internet access to participate in forum discussion and group work. To run Moodle most effectively, you should have:

- broadband connection (256 Kbit/sec or faster)
- Chrome browser or FireFox
- ability to view streaming video (high or low definition UNSW The Box options)

More information about system requirements is available at www.student.unsw.edu.au/moodle-system-requirements.

7.4. Accessing Course Materials through Moodle

Course outlines and support materials are uploaded on a Learning Management System (LMS) - Moodle. All enrolled students are automatically included on the Moodle for each course. To access these documents, please visit: www.moodle.telt.unsw.edu.au

7.5. Assignment Submissions

The School has developed a guideline to help you when submitting a course assignment. Please take a closer look at all these details on our website: www.engineering.unsw.edu.au/mining-engineering/assignment-submission-policy

We encourage you to retain a copy of every assignment submitted for assessment for your own
7.6. Late Submission of an Assignment

Full marks for an assignment are only possible when an assignment is received by the due date. In fairness to those students who do meet the assignment due date and time, deductions will apply to submissions made after this time. Details on deductions that are automatically applied to late submissions are available on our webpage: http://www.engineering.unsw.edu.au/mining-engineering/late-submissions

We understand that at times you may not be able to submit an assignment on time, and the School will accommodate any fair and reasonable extension. We would recommend you review the UNSW Special Consideration guidelines as soon as possible: https://student.unsw.edu.au/special-consideration

7.7. Course Results

For details on UNSW assessment policy, please visit: https://student.unsw.edu.au/assessment

In some instances your final course result may be withheld and not released on the UNSW planned date. This is indicated by a course grade result of either:

- WD – which usually indicates you have not completed one or more items of assessment or there is an issue with one or more assignment; or
- WC – which indicates you have applied for Special Consideration due to illness or misadventure and the course results have not been finalised.

In either event it would be your responsibility to contact the Course Convener as soon as practicable but no later than five (5) days after release of the course result. If you don’t contact the convener on time, you may be required to re-submit an assignment or re-sit the final exam and may result in you failing the course. You would also have a NC (course not completed) mark on your transcript and would need to re-enroll in the course.

7.8. Special Consideration

You can apply for special consideration through UNSW Student Central when illness or other circumstances interfere with your assessment performance. Sickness, misadventure or other circumstances beyond your control may:

- Prevent you from completing a course requirement,
- Keep you from attending an assessable activity,
- Stop you submitting assessable work for a course,
- Significantly affect your performance in assessable work, be it a formal end-of-semester examination, a class test, a laboratory test, a seminar presentation or any other form of assessment.

We ask that you please contact the Course Convenor immediately once you have completed the special consideration application, no later than one week from submission.

More details on special consideration can be found at: https://www.student.unsw.edu.au/special-consideration

7.9. Students Needing Additional Support

The Student Equity and Disabilities Unit (SEADU) aims to provide all students with support and professional advice when circumstances may prevent students from achieving a successful university education. Take a look at their webpage: http://www.studentequity.unsw.edu.au/
7.10. Academic Honesty and Plagiarism

Your lecturer and the University will expect your submitted assignments are truly your own work. UNSW has very clear guidelines on what plagiarism is and how to avoid it. Plagiarism is using the words or ideas of others and presenting them as your own. Plagiarism is a type of intellectual theft. It can take many forms, from deliberate cheating to accidentally copying from a source without acknowledgement. The University has adopted an educative approach to plagiarism and has developed a range of resources to support students. All the details on plagiarism, including some useful resources, can be found at https://www.student.unsw.edu.au/plagiarism.

All Mining Engineering students are required to complete a student declaration for academic integrity which is outlined in the assignment cover sheets. By signing this declaration, you agree that your work is your own original work.

If you need some additional support with your writing skills, please contact the Learning Centre or view some of the resources on their website: http://www.lc.unsw.edu.au/. The Learning Centre is designed to help you improve your academic writing and communication skills. Some students use the Centre services because they are finding their assignments a challenge, others because they want to improve an already successful academic performance.

7.11. Report Writing Guide for Mining Engineers

7.12. Continual Course Improvement

At the end of each course, all students will have the opportunity to complete a course evaluation form. These anonymous surveys help us understand your views of the course, your lecturers and the course materials. We are continuously improving our courses based on student feedback, and your perspective is valuable.

We also encourage all students to share any feedback they have any time during the course – if you have a concern, please contact us immediately.