Enhanced Removal of Organic Pollutants with Novel Adsorbent

Mitchell Grierson

Prof Rose Amal, Dr May Lim, Dr Sanly Liu

Resources and Infrastructure for the Future

Organic Pollutant in Water

Ethanol + Water

Chlorine

Disinfection By-Products (Toxic)

Current Removal Methods

Coagulation - Ion Exchange Resin
Activated Carbon - Membrane Filtration

Waste Products

Energy Intensive

Novel Adsorbent

I synthesised metal oxide/ TiO$_2$ nanoparticles with the aim of enhancing the removal of NOM from drinking water

Preparation and Testing of Novel Adsorbent

Particles loaded in polluted water sample from Happy Valley (S.A.)

UV absorbance & organic carbon content tested before and after

Nanoparticle Characterisation

Transmission Electron Microscopy (TEM)

Removal performance

UV/Visible Spectrum Analysis

Performance testing

Key Findings

Increased surface area and smaller particle size supports performance results of my particles.

Results

<table>
<thead>
<tr>
<th>Property</th>
<th>Commercial TiO$_2$</th>
<th>Plain TiO$_2$</th>
<th>My Particle (Fe-TiO$_2$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>BET Surface Area</td>
<td>35 - 65 m2/g</td>
<td>96 m2/g</td>
<td>125 m2/g</td>
</tr>
<tr>
<td>Average Particle Size</td>
<td>21 nm</td>
<td>10 nm</td>
<td>15 nm</td>
</tr>
</tbody>
</table>

Increased pollutant removal efficiency of my particle

Conclusion

The removal performance tests showed that my synthesised TiO$_2$ and Fe-TiO$_2$ nanoparticles outperformed the commercial TiO$_2$ in adsorption tests, therefore enhancing the removal of NOM from drinking water.

Importance and Recommendations

- More effective treatment of organic pollutants
- Less waste and more energy efficiency
- Future studies might involve testing the degradation performance of my particles.

Acknowledgements: The Mark Wainwright Analytical Centre. (EMU & XRD). Particle and Catalysis Group – Chemical Engineering.

Resources: Sigma-Aldrich: Titanium(IV) oxide specification sheet.